目 录

概述	1
一、建设项目特点	1
二、环境影响评价工作过程	1
三、关注的主要环境问题及环境影响	2
四、环境影响评价主要结论	2
1 总则	3
1.1 编制依据	3
1.2 评价目的及工作原则	8
1.3 环境影响识别及评价因子筛选	9
1.4 评价标准	11
1.5 评价工作等级和评价范围	16
1.6 相关规划及环境功能区划	19
1.7 主要环境保护目标	25
1.8 评价技术路线	27
2 建设项目概况	28
2.1 项目建设地点	28
2.2 华中表面处理循环经济产业园建设情况	28
2.3 拟建项目基本情况	39
2.4 生产规模及产品方案	39
2.5 项目组成	40
2.6 原辅材料	44
2.7 主要生产设备	50
2.8 车间平面布置	53
2.9 公用工程	53
2.10 工作时间与劳动定员	54
2.11 建设周期	54
2.12 主要经济技术指标	54
3 建设项目工程分析	55
3.1 生产工艺基本原理	55
3.2 生产工艺流程与产污节点分析	58
3.3 平衡分析	72

3.4 污染源源强	80
3.5 清洁生产分析	96
4 环境现状调查与评价	104
4.1 自然环境现状	104
4.2 区域环境质量现状调查与评价	109
4.3 区域污染源调查与评价	128
5 环境影响预测与评价	132
5.1 营运期环境影响预测评价	132
5.2 施工期环影响评价	174
6 环境风险评价	176
6.1 环境风险评价的目的和重点	176
6.2 环境风险调查	176
6.3 风险等级判定	178
6.4 风险识别	183
6.5 风险事故情形分析	185
6.6 源项分析	187
6.7 风险评价	187
6.8 风险管理	188
6.9 风险评价结论	197
7 环境保护措施及其可行性论证	199
7.1 营运期环境保护措施	199
7.2 施工期环境保护措施	213
7.3 环境保护投资及"三同时"验收清单	214
7.4 华中表处园与入驻企业环境责任划分	217
7.5 项目环境可行性分析	218
8 环境影响经济损益分析	231
8.1 经济效益分析	231
8.2 社会效益分析	231
8.3 环境损益分析	231
8.4 小结	234
9 环境管理与监测计划	235
9.1 环境管理要求	235
9.2 污染物排放管理要求	235

9.3 环境管理制度	239
9.4 环境监测计划	243
10 环境影响评价结论	246
10.1 建设项目建设概况	246
10.2 环境质量现状	246
10.3 主要环境影响	247
10.4 公众意见采纳情况	249
10.5 环境保护措施及污染物排放情况	249
10.6 环境影响经济损益分析	250
10.7 环境管理与监测计划	251
10.8 环境风险	251
10.9 清洁生产	251
10.10 主要污染物总量控制	251
10.11 项目环境可行性	251
10.12 环境影响结论	252

概述

一、建设项目特点

荆州恒镁表面处理科技有限公司成立于 2019 年,拟租用华中表面处理循环 经济产业园 301#厂房 4 楼建设 900 万件/年汽车零部件及 300 万件/年电器配件表面处理生产线项目。

华中表面处理循环经济产业园(以下简称"华中表处园")为湖北金茂环保科技有限公司投资建设,《湖北金茂环保科技有限公司华中表面处理循环经济产业园项目环境影响报告书》于 2018 年 6 月 8 日取得环保部门审查意见(荆环保审文[2018]47号),该项目总投资约 220000 万元,占地面积 978 亩,分四期进行建设,规划年电镀总面积 1453 万平方米,镀种涉及镀锌、镀镍、镀铬、镀银、镀铜、镀镉等,不涉及镀铅、镀汞、镀砷等。目前项目一期工程(一阶段)正在建设中,包括 101~102#厂房、201#~202#厂房、301#~302#厂房(共 6 栋),规模 5000m³/d 电镀废水深度处理车间,污泥处置中心、危险化学品仓库、危废暂存间、生产水池、消防水池、风险应急池、综合服务中心等主体、环保及公辅工程。华中表面处理循环经济产业园集中荆州市及周边地区电镀工业企业,实行电镀产业统一规划,资源有效利用,壮大电镀行业产业链,统一环境治污。

2018年,金茂源环保控股有限公司(湖北金茂环保科技有限公司的母公司) 成立了全资子公司金源(荆州)环保科技有限公司,由金源公司对华中表处园 进行运营。

荆州恒镁表面处理科技有限公司充分依托华中表面处理循环经济产业园的 完善配套设施,利用产业聚集效应,拟建设 4 条电镀生产线,项目建成以后可 形成 900 万件/年汽车零件及 300 万件/年电器配件表面处理能力,本项目镀锌、 镀镍/铬、镀铜镍铬、镀镍符合华中表处园规划镀种要求。

二、环境影响评价工作过程

根据《中华人民共和国环境保护法》、《中华人民共和国环境影响评价法》 及《建设项目环境保护管理条例》的规定,建设单位应当开展环境影响评价工 作。根据建设项目分类管理名录,本项目属于二十二、金属制品业"68.金属制品 表面处理及热处理加工"。2020年7月荆州恒镁表面处理科技有限公司委托湖北荆州环境保护科学技术有限公司承担其900万件/年汽车零部件及300万件/年电器配件表面处理生产线项目环境影响评价工作。我公司在接受委托后,认真组织实施了该项目的环境影响评价工作,组织有关技术人员收集、整理资料,对项目所在区域环境现状进行了调查,并对国内类似项目情况进行了调研,分析了拟建项目环境影响评价重点、评价范围和污染现状,对环境影响主要因子进行识别和筛选,对周围自然环境进行调查,对工程分析和污染源参数进行核算,并进行各要素环境影响预测及分析,在此基础上完成《荆州恒镁表面处理科技有限公司900万件/年汽车零部件及300万件/年电器配件表面处理生产线项目环境影响报告书》(送审本),提交给荆州恒镁表面处理科技有限公司报荆州市生态环境局审查。

三、关注的主要环境问题及环境影响

除按规范要求完成各章节编制工作外,报告中还重点关注以下几方面问题: 分析建设项目生产工艺流程,根据其水平衡、物料平衡,分析其污染物产生情况及排放情况;根据工程分析中各种污染源强分析结果,论证建设项目废水、废气、噪声、固体废物等达标排放的可行性,提出相应环境保护措施;进行环境风险物质识别和环境风险事故影响分析,提出相应环境风险防范措施。

四、环境影响评价主要结论

荆州恒镁表面处理科技有限公司 900 万件/年汽车零部件及 300 万件/年电器配件表面处理生产线项目的建设将促进地区经济的发展。项目建设符合国家现行产业政策,厂址选择合理,符合荆州经济技术开发区军民融合暨光通讯电子信息产业园规划,满足资源综合利用和清洁生产的要求,项目环保措施合理,项目投产后正常运行时各种污染物均能满足排放达标和主要污染物总量控制指标达标的要求,对周围环境和主要环境保护目标影响较小。项目选址符合当地土地利用规划、地表水环境功能区划、空气环境功能区划、声环境功能区划以及建设项目环境管理的要求,环境风险在可承受范围内。从环保角度而言,该项目在拟建地建设具有环境可行性。

1 总则

1.1 编制依据

1.1.1 法律法规、行政文件及技术规范

1.1.1.1 法律

- 1.《中华人民共和国环境保护法》(2014年4月24日);
- 2.《中华人民共和国环境影响评价法》(2018年12月29日修订);
- 3.《中华人民共和国大气污染防治法》(2018年10月26日修订);
- 4.《中华人民共和国水污染防治法》(2017年6月27日修订);
- 5.《中华人民共和国固体废物污染环境防治法》(2020年4月29日修订);
- 6.《中华人民共和国环境噪声污染防治法》(2018年 12月 29日修订);
- 7.《中华人民共和国土壤污染防治法》(2019年1月1日实施);
- 8.《中华人民共和国水法》(2016年7月2日修订);
- 9.《中华人民共和国节约能源法》(2016年7月2日修订);
- 10.《中华人民共和国清洁生产促进法》(2012年7月1日修订);
- 11.《中华人民共和国循环经济促进法》(2018年10月26日修订);

1.1.1.2 行政法规

- 1.中华人民共和国国务院令第 682 号《建设项目环境保护管理条例》(2017 年 10 月 1 日):
- 2.中华人民共和国国务院令第 344 号《危险化学品安全管理条例(修订)》 (国务院令第 591 号, 2011 年 3 月);
- 3.国务院国发(2005) 40 号文《关于发布实施<促进产业结构调整暂行规定》的决定》(2005年12月2日);
- 4.国务院国发(2005)39号文《国务院关于落实科学发展观加强环境保护的 决定》(2005年12月3日);
- 5.国务院国发(2006)11号《关于加快推进产能过剩行业结构调整的通知》 (2006年3月12日);
- 6.《国务院关于加强环境保护重点工作的意见》(国发〔2011〕35 号,2011 年 10 月 20 日);

1.1.1.3 部门规章和行政文件

- 1.国家发展改革委令 2019 年第 29 号《产业结构调整指导目录(2019 年版)》;
- 2.生态环境部令(2018年4月28日)第1号《建设项目环境影响评价分类管理名录》;
- 3.原国家环保总局办公厅环办函(2006)394号文《关于加强环保审批从严控制新开工项目的通知》(2006年7月6日);
- 4.国土资源部、国家发展改革委国土资发(2012)98号《关于发布实施《限制用地项目目录(2012年本)》和《禁止用地项目目录(2012年本)》的通知》;
- 5.国土资发〔2008〕24 号国土资源部关于发布和实施《工业项目建设用地控制指标》的通知;
- 6.《关于进一步加强环境影响评价管理防范环境风险的通知》(环境保护部文件环发(2012)77号,2012年07月03日);
- 7.《关于进一步加强危险化学品安全生产工作的指导意见》(国务院安委会办公室安委办〔2008〕26号,2008年9月14日):
- 8.《关于开展重大危险源监督管理工作的指导意见》(安监管协调字〔2004〕 56号,2004年4月27日);
- 9.《关于深入推进重点企业清洁生产的通知》, (环发〔2010〕54 号, 2010 年 4 月 12 日);
- 10.关于印发《突发环境事件应急预案管理暂行办法》的通知(环发〔2010〕 113 号):
 - 11.《国务院关于印发"十三五"节能减排综合性工作方案的通知》(国发〔2016〕74号,2017年1月5日):
- 12.《关于切实加强风险防范严格环境影响评价管理的通知》(环发〔2012〕 98号,2012年8月8日);
- 13.《排污许可管理办法(试行)》2017年11月6日由环境保护部部务会议审议通过,部令第48号,2017年11月6日实施。
- 14.《国务院关于印发打赢蓝天保卫战三年行动计划的通知》(国发[2018]22号);
- 15.环发〔2014〕197号《建设项目主要污染物排放总量指标审核及管理暂行办法》:

- 16.《国务院关于印发水污染防治行动计划的通知》(国发〔2015〕17号, 2015年4月2日);
- 17.国务院国发(2016)31号《国务院关于印发土壤污染防治行动计划的通知》(2016年5月31日);
- 18.《关于进一步加强工业节水工作的意见》(工信部节(2010)218号,2010年5月);
- 19.《建设项目环境影响评价政府信息公开指南(试行)》(原环保部,2014年1月1日);
- 20.《环境影响评价公众参与办法》(生态环境部令第 4 号, 2019 年 1 月 1 日起施行);
- 21.《建设项目主要污染物排放总量指标审核及管理暂行办法》(环发〔2014〕 197号):
- 22.《关于印发地下水污染防治实施方案的通知》(环土函〔2019〕25 号〕。 1.1.1.4 地方法规、规章
- 1. 鄂政办发〔2000〕10 号《省人民政府办公厅转发省环保局关于湖北省地 表水环境功能区划类别的通知》:
 - 2. 鄂政函〔2003〕101号文《省人民政府关于同意湖北水功能区划的批复》;
- 3.湖北省第十二届人民代表大会第二次会议公告《湖北省水污染防治条例》 (2018年11月19日修订);
- 4.湖北省人民政府令第 364 号《湖北省危险化学品安全管理办法》(2013 年 8 月 26 日省人民政府常务会议审议通过,自 2013 年 11 月 1 日起施行);
- 5. 鄂政办发〔2016〕96 号《省人民政府办公厅关于印发湖北省主要污染物排污权有偿使用和交易办法的通知》;
- 6.鄂环发[2019]19 号《湖北省生态环境厅关于深化排污权交易试点工作的通知》;
- 7.湖北省人民代表大会常务委员会公告第 61 号《湖北省实施<中华人民共和国水法>办法(修订)》(2006 年 7 月 21 日修订);
- 8.《湖北省大气污染防治条例》(2018 年 11 月 19 日修订, 2019 年 6 月 1 日实施);

- 9.《湖北省土壤污染防治条例》(湖北省第十二届人民代表大会第四次会议于 2016年2月1日通过,2016年10月1日起施行);
- 10.《省人民政府关于贯彻落实国务院大气污染防治行动计划的实施意见》(鄂政发〔2014〕6号);
- 11.鄂环办发〔2014〕58 号《关于印发<湖北省大气污染防治行动计划实施情况考核办法(试行)>的通知》:
- 12.《省人民政府关于印发湖北省水污染防治行动计划工作方案的通知》(鄂政发〔2014〕3号):
 - 13.《省人民政府关于贯彻落实国务院大气污染防治行动计划的实施意见》 (鄂政发〔2014〕6号);
 - 14.《省人民政府关于印发湖北省土壤污染防治行动计划工作方案的通知》 (鄂政发〔2016〕85号);
- 15.《省人民政府关于发布湖北省生态保护红线的通知》(鄂政发〔2018〕 30号);
- 16.鄂环委办〔2016〕79号《省环委会办公室关于印发湖北重点行业挥发性 有机物污染整治实施方案的通知》;
- 17. 鄂政发〔2018〕44 号《省人民政府关于印发湖北省打赢蓝天保卫战行动 计划〔2018—2020 年〕的通知》,2018 年 10 月 27 日发布;
- 18.荆政发〔2014〕21号《关于印发荆州市大气污染防治行动计划的通知》, 2014年11月17日发布;
 - 19.荆政发〔2016〕12号《荆州市水污染防治行动计划工作方案》;
 - 20.荆政发〔2017〕19号《关于印发荆州市土壤污染防治工作方案的通知》。

1.1.1.5 技术规范

- 1.《建设项目环境影响评价技术导则-总纲》(HJ 2.1-2016);
- 2. 《环境影响评价技术导则-大气环境》(HJ 2.2-2018);
- 3. 《环境影响评价技术导则-地表水环境》(HJ 2.3-2018):
- 4. 《环境影响评价技术导则-地下水环境》(HJ 610-2016);
- 5.《环境影响评价技术导则-声环境》(HJ 2.4-2009);
- 6.《建设项目环境风险评价技术导则》(HJ 169-2018);

- 7.《环境影响评价技术导则-土壤环境(试行)》(HJ 964-2018):
- 8.《建设项目环境影响技术评估导则》(HJ 616-2011);
- 9.《水污染治理工程技术导则》(HJ 2015-2012);
- 10.《大气污染治理工程技术导则》(HJ 2000-2010);
- 11. 《排污单位自行监测技术指南 总则》(HJ 819-2017);
- 12.《制定地方大气污大染物排放标准的技术方法》(GB/T 3840-91);
- 13. 《常用危险化学品储存通则》(GB 15603-1995);
- 14.《危险化学品事故灾难应急预案》(国家安全生产监督管理总局);
- 15.《固体废物鉴别导则(试行)》(原国家环保总局公告 2006 年 11 号);
- 16.《危险废物收集 贮存 运输技术规范》(HJ2025-2012);
- 17.《危险废物鉴别标准》(GB5085-2019);
- 18.《建筑设计防火规范》(GB50016-2014);
- 19.《建设项目危险废物环境影响评价指南》(公告 2017 年第 43 号);
- 20.《危险废物污染防治技术政策》(环发[2001]199号);

1.1.1.6 规划文件

- 1.《全国生态保护"十三五"规划纲要》;
- 2.《"十三五"生态环境保护规划》;
- 3.《湖北省环境保护"十三五"规划》;
- 4.《荆州市环境保护"十三五"规划》;
- 5.《荆州经济技术开发区军民融合暨光通讯电子信息产业园 A 区控制性详细规划》。

1.1.2 评价委托书

《荆州恒镁表面处理科技有限公司 900 万件/年汽车零部件及 300 万件/年电器配件表面处理生产线项目环境影响评价委托书》,见附件 1。

1.1.3 项目有关资料

荆州恒镁表面处理科技有限公司提供的其它相关资料。

1.2 评价目的及工作原则

1.2.1 评价目的

为了正确处理项目所在地区的经济、社会发展和环境保护,维护生态平衡的关系,做到瞻前顾后,统筹兼顾,维护和创造良好的生产与生活环境,使该项目的建设达到经济效益、社会效益和环境效益的统一,我单位按照国家建设项目影响评价技术相关导则的规定开展本次环境影响评价工作,力求达到下述目的:

- (1)通过项目地区的环境现状调查及监测,掌握所在区域环境质量现状,确定区域主要污染源及主要环境问题;确定环境容量及满足环境容量相应对策和措施;
- (2)分析本工程所采用的生产工艺和设备是否属于清洁生产工艺;分析工程设计采用污染治理措施的合理性、可行性和可靠性,经治理后各污染物是否能满足稳定达标排放的要求,以最大限度减少工程对环境的不利影响;对分析中发现的问题提出改进措施和要求;
- (3)根据行业技术政策和国家环境保护最佳实用技术水平,分析项目污染 治理措施和清洁生产工艺,提出切实可行的污染防治对策和措施:
- (4)针对工程的特点,采用类比调研、资料分析及现场调查相结合的手段 收集资料,在保证环境影响报告书质量的前提下,充分利用现有资料和成果, 以节省时间、缩短评价周期,预测分析本工程建成后环境影响范围和程度;
- (5)按照国家、省、市环保行政主管部门关于"总量控制"的要求,提出切实可行的污染防治工艺,并按区域环境质量达标和污染物达标排放的要求,提出相应的污染防治措施与建议,对工程建设的可行性从环保角度作出结论,为项目审批部门的决策、设计部门的设计、建设单位工程项目的实施及项目的环境管理提供依据。

1.2.2 工作原则

突出环境影响评价的源头预防作用,坚持保护和改善环境质量。

(1) 依法评价

贯彻执行我国环境保护相关法律法规、标准、政策和规划等,优化项目建

设,服务环境管理。

(2) 科学评价

规范环境影响评价方法,科学分析项目建设对环境质量的影响。

(3) 突出重点

根据建设项目的工程内容及其特点,明确与环境要素间的作用效应关系, 根据规划环境影响评价结论和审查意见,充分利用符合时效的数据资料及成果, 对建设项目主要环境影响予以重点分析和评价。

1.3 环境影响识别及评价因子筛选

1.3.1 环境影响识别

利用矩阵识别法对本项目建设期和运营期产生的环境影响因素进行识别, 具体见表 1.3-1。本项目厂房、公辅工程、环保工程均依托华中表面处理循环经济产业园,目前正在建设中,因此本次评价仍对施工期进行简要分析。

评				影叫	向特征			
价时段	评价因子		性质	程度	时 间	可能 性	影响说明	减免防治措施
	自	大气环境	-	2	短	小	施工二次扬尘	对道路场地洒水
施	然	地表水环境	-	3	短	小	施工生活污水	沉淀、格栅
旭	环	环境噪声	-	3	短	小	建筑机械噪声	加强管理
工	境	固体废物	-	3	短	小	建筑垃圾	加强管理
期	生态	陆生植物	-	3	短	小	施工粉尘附着植 物叶面	对道路、场地洒 水
	环境	水生生物	-	3	短	小	生活污水	治理
		大气环境	-	2	长	大	盐酸雾	处理后排放
		地表水环境	-	3	长	大	综合废水	处理后排放
营	自然	固体废物	-	3	长	小	生产固废、生活 垃圾	分类处理处置
运	环境	环境噪声	-	3	长	小	设备噪声	合理布局、降噪 措施
期		地下水环境	-	3	长	小	废水、废液等	分区防渗
		土壤环境	-	3	长	小	盐酸雾	处理后排放
	生	陆上植物	-	3	长	小	盐酸雾	治理

表 1.3-1 建设项目环境影响识别矩阵一览表

态环	水生生物	-	3	长	小	综合废水	分类治理
境							

- 注: (1) 影响性质"+"为有利影响; "-"为不利影响;
 - (2) 影响程度"1"为重大影响;"2"为中等影响;"3"为轻微影响。

1.3.2 环境影响评价因子的筛选

根据上表列出的本工程环境影响识别矩阵,经综合分析,筛选出主要环境 影响评价因子列于表 1.3-2。

表 1.3-2 主要环境影响评价因子一览表

环境		评价因子		
要素	现状评价	施工期影响评价	营运期影响评价	
地表水	pH、DO、COD、BOD ₅ 、NH ₃ -N、 总氮、总磷、石油类、挥发酚、硫 化物、汞、铜、锌、铅、镉、砷、 Cr ⁶⁺ 、氟化物、氰化物、SS、镍	pH、COD、BOD ₅ 、 SS、NH ₃ -N	pH/COD、SS、NH ₃ -N、 锌、镍、铬、铜	
地下水	pH, 氨氮,挥发酚,亚硝酸盐, 硫酸盐,总硬度,氯化物,砷,氰 化物,铁,铬(六价),铅,氟化 物,嗅和味,浑浊度/NTUa,锰, 溶解性总固体,耗氧量(COD _{Mn}), 总大肠菌群,肉眼可见物,硝酸盐, 色(铂钴色度单位),水温/°C	/	锌、镍、铬、铜	
大气	HCl, PM ₁₀ , SO ₂ , NO ₂	PM_{10}	HC1	
噪声	昼夜间等效声级	昼夜间等效声级	昼夜间等效声级	
土壤	砷、镉、铬(六价)、铜、铅、汞、镍、四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,2-四氯乙烷、四氯乙烷、1,1,1-三氯乙烷、1,1,2-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、对/间-二甲苯、邻-二甲苯、硝基苯、苯胺、2-氯酚、苯并(a) 蒽、苯并(a) 克、苯并(b) 荧蒽、苯并(k) 荧蒽、菌、	/	HCl、锌、镍、铬、铜	

	二苯并 (a, h) 蒽、茚并 (1, 2, 3-c, d) 芘、萘、pH、钴		
固体 废物	/	施工垃圾	一般工业固废、危险废物

1.3.3 评价时段

该项目分为建设过程和生产运行两个阶段。建设过程的环境影响属短时、局部和部分可逆性的影响,影响可随建设期的完成而基本消失;运行期的环境影响属长期、局部和不可逆性影响,并随着排污量的增加对环境影响也将进一步加深,从环保管理控制上必须满足污染物达标排放和总量控制,确保满足区域环境质量的功能要求。

因此,评价重点关注运行期的环境影响,同时对建设期做简要分析。

1.4 评价标准

1.4.1 环境质量标准

(1) 空气环境质量标准见表 1.4-1。

标准限值 类 评价 标准号及名称 类(级)别 别 对象 名称 取值时间 限值 24 小时平均 $150 \mu g/m^3$ SO_2 1 小时平均 $500 \mu g/m^3$ 《环境空气质量 24 小时平均 $150 \mu g/m^3$ PM_{10} 标准》 环 区域 $PM_{2.5}$ 24 小时平均 $75\mu g/m^3$ (GB3095-2012) 境 环境 24 小时平均 $80\mu g/m^3$ 空 NO_2 空气 1 小时平均值 $200 \mu g/m^3$ 气 《环境影响评价 1 小时平均 $50\mu g/m^3$ 附录 D 技术导则-大气环 氯化氢 表 D.1 日平均 $15\mu g/m^3$ 境》(HJ2.2-2018)

表 1.4-1 环境空气质量标准限值一览表

(2) 地表水环境质量标准见表 1.4-2。

表 1.4-2 地表水环境质量限值一览表

类别	标准号及名称	评价对象	类(级)别	标准限值	
突刑	你任与及石物		关(级)剂	名称	限值(mg/L)
地表	《地表水环境质量	长江	III	рН	6-9(无量纲)
水环	标准》		111	COD	≤20

境	(GB3838-2002)		BOD ₅	≤4
			氨氮	≤1.0
			总氮	≤1.0
			总磷	≤0.2
			石油类	≤0.2
			挥发酚	≤0.005
			硫化物	≤0.2
			铜	≤1.0
			锌	≤1.0
			砷	≤0.05
			汞	≤0.0001
			镉	≤0.005
			铬 (六价)	≤0.05
			铅	≤0.05
			镍	≤0.02
			氟化物	≤1.0
			氰化物	≤0.2

(3) 区域声环境质量标准见表 1.4-3。

表 1.4-3 区域声环境质量限值一览表

		评价对象	类(级) 别	标准限值		
类别	标准号及名称			` ′	限值。	dB(A)
					昼间	夜间
声环境	《声环境质量标准》 (GB3096-2008)	厂界	3	等效声级 Leq(A)	65	55

(4)区域地下水环境质量执行《地下水质量标准》(GB/T14848-2017)表 1Ⅲ类限值,具体限值见表 1.4-4。

表 1.4-4 区域地下水环境质量限值一览表

序号	项目	III类限值	序号	项目	III类限值
1	рН	6.5~8.5	13	氯化物	≤250mg/L
2	耗氧量	≤3.0mg/L	14	硝酸盐	≤20mg/L
3	氨氮	≤0.5mg/L	15	亚硝酸盐	≤1.0mg/L
4	As	≤0.01mg/L	16	总硬度	≤450mg/L
5	氟化物	≤1.0 mg/L	17	挥发酚	≤0.002mg/L
6	砷	≤0.01mg/L	18	硫酸盐	≤250mg/L
7	铬(六价)	≤0.05mg/L	19	溶解性总固体	≤1000mg/L

8	锰	≤0.1mg/L	20	氰化物	≤0.05mg/L
9	铁	≤0.3mg/L	21	浑浊度/NTUa	≤3
10	铅	≤0.01mg/L	22	色(铂钴色度单位)	15
11	嗅和味	≤0.005			
12	总大肠菌群	≤3.0MPNb/100mL			

(5)区域土壤环境质量执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)表1第二类用地限值,具体限值见表1.4-5。

表 1.4-5 区域土壤环境质量限值一览表

\ \		第二	评价		
15	宋 初项日	筛选值	管控值	对象	
	砷	60	140		
	镉	65	172		
	铬 (六价)	5.7	78		
重金属和无机物	铜	18000	36000		
	铅	800	2500		
	汞	38	82		
	镍	900	2000		
	四氯化碳	2.8	36		
	氯仿	0.9	10		
	氯甲烷	37	120		
	1,1-二氯乙烷	9	100	- - - - - - - -	
	1, 2-二氯乙烷	5	21		
	1, 1-二氯乙烯	66	200		
	顺-1,2-二氯乙烯	596	2000		
	反-1,2-二氯乙烯	54	163		
	二氯甲烷	616	2000		
	1,2-二氯丙烷	5	47		
	1, 1, 1, 2-四氯乙烷	10	100		
挥发性有机物	1, 1, 2, 2-四氯乙烷	6.8	50		
	四氯乙烯	53	183		
	1, 1, 1-三氯乙烷	840	840		
	1, 1, 2-三氯乙烷	2.8	15		
	三氯乙烯	2.8	20		
	1, 2, 3-三氯丙烷	0.5	5		
	氯乙烯	0.43	4.3	1	
	苯	4	40		
	氯苯	270	1000	_	
	1, 2-二氯苯	560	560		
	1,4-二氯苯	20	200	1	
	乙苯	28	280	7	

	苯乙烯	1290	1290
	甲苯	1200	1200
	间二甲苯+对二甲苯	500	570
	邻二甲苯	640	640
	硝基苯	76	760
	苯胺	260	663
	2-氯酚	2256	4500
	苯并(a)蒽	15	151
	苯并〔a〕芘	1.5	15
半挥发性有机物	苯并〔b〕荧蒽	15	151
	苯并(k)荧蒽	151	1500
	薜	1293	12900
	二苯并〔a, h〕蒽	1.5	15
	茚并〔1, 2, 3-cd〕芘	15	151
	萘	70	700

1.4.2 排放标准

(1) 废气排放标准

本项目废气排放标准详见表 1.4-6。

排放标准限值 评价 类别 标准号及名称 污染物 周界外浓度最高点 对象 浓度 (mg/m³) (mg/m^3) 《大气污染物综合 排放标准》 生产废气 氯化氢 0.20 (GB16297-1996)表 2 废 氯化氢 30 气 《电镀污染物排放 镀锌基准排气量 $18.6m^3/m^2$ 标准》(GB 生产废气 镀铬基准排气量 $74.4m^3/m^2$ 21900-2008) 表 5、 其他镀种(镀铜、镍等)基准 表 6 $37.3m^3/m^2$ 排气量

表 1.4-6 废气排放标准限值一览表

(2) 废水排放标准

本项目生产废水及生活污水经华中表处园污水处理站(即"电镀废水深度处理车间")处理后经专用管网接入排江工程泵站,废水经泵站提升排入长江。本项目废水排放标准应满足华中表处园电镀废水深度处理车间进水水质要求。依据华中表面处理循环经济产业园环评批复,华中表处园生产区废水中第一类重

金属污染物经分质处理达到《电镀污染物排放标准》(GB 21900-2008)表 2 中车间或生产设施排口排放限值要求后,与其他工业废水一起经园区专业污水处理设施进行处理,总排口废水达到《电镀污染物排放标准》(GB 21900-2008)表 2 标准以及《城市污水再生利用 工业用水水质》(GB/T 9923-2005)中相应排放标准限值。

本项目废水处理依托华中表处园电镀废水深度处理车间,依据《排污许可证申请与核发技术规范 电镀工业》(HJ855-2017),针对专门处理电镀废水的集中式污水处理厂,车间或生产设施废水排放口是指含第一类废水分质处理的特定处理单元出水口(分质处理的含第一类污染物的废水与其他废水混合前)。本项目废水排放标准详见表 1.4-7。

表 1.4-7 废水排放标准限值一览表

类别	标准号及名称	评价 对象	类(级)别	控制指标		
				污染物名称	排放限值(mg/L)	
				总铬		1.0
		车间或		六价铬		0.2
		生产设	表 2	总镍		0.5
		施废水	衣 2	总镉	(0.05
	《电镀污染物排放标 准》(GB 21900-2008)	排放口		总银	(0.3
				总铅	1	0.2
				总汞	(0.01
		废水总		总铜	-	0.5
				总锌	1.5	
废				总铁	3.0	
水				总铝	3.0	
		排口	表 2	氟化物	10	
				总氰化物	0.3	
				单位产品基准排	多层镀	500
				水量, L/m ² (镀件 镀层)	单层镀	200
	《电镀污染物排放标	华中表		рН	(5~9
	准》(GB 21900-2008)	面处理		COD	60	
	表2,《城市污水再生 利用工业用水水质》			NH ₃ -N		5
	(GB/T 19923 -2005) 园废;			悬浮物	50	

总排口	总氮	20
	总磷	1
	石油类	3.0

(3) 项目噪声排放标准见表 1.4-8。

表 1.4-8 噪声排放标准限值一览表

				标准限值			
类别	标准号及名称	评价对 象	类(级)别	名称	限值。	dB(A)	
		承		石 柳	昼间	夜间	
施工期	《建筑施工场界环境噪声排	施工场	,	等效声级	70	55	
噪声	放标准》(GB 12523—2011)	界	/	Leq(A)	/0	55	
营运期	《工业企业厂界环境噪声排	厂界四	2	等效声级	65	55	
噪声	放标准》(GB 12348-2008)	周	3	Leq(A)	03	55	

1.4.3 其他

固体废物:按其性质不同拟分别执行不同标准:一般工业固体废物执行《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及其修改单; 危险废物执行《危险废物贮存污染控制标准》(GB18597-2001)及其修改单。

1.5 评价工作等级和评价范围

1.5.1 大气环境影响评价等级确定

按照《环境影响评价技术导则 大气环境》(HJ 2.2-2018),项目大气环境影响评价工作等级判断如下:根据项目污染源初步调查结果,分别计算项目排放主要污染物的最大地面空气质量浓度占标率 Pi(第 i 个污染物,简称"最大浓度占标率"),及第 i 个污染物的地面空气质量浓度达到标准值的 10%时所对应的最远距离 D10%。其中 Pi 定义为:

$$P_i = \frac{C_i}{C_{oi}} \cdot 100\%$$

式中:

Pi-第 i 个污染物的最大地面浓度占标率, %:

Ci-采用估算模型计算出第 i 个污染物的最大 1h 地面空气质量浓度, μ g/m³; Coi-第 i 个污染物的环境空气质量浓度标准, μ g/m³。

评价工作等级按分级判据进行划分。最大地面浓度占标率 Pi 按公式(1)计

算,如污染物数 i 大于 1,取 P 值中最大者(Pmax),和其对应的 D10%。 项目评价工作等级表见表 1.5-1。

评价工作等级	评价工作分级依据
一级	Pmax≥10%
二级	1%≤Pmax<10%
三级	Pmax<1%

表 1.5-1 大气环境影响评价等级判别表

根据导则规定,项目污染物数大于 1,取 P 值中最大的(Pmax)和其对应的 D10%作为等级划分依据,本项目 P 值中最大占标率为 38.45%>10%。对照《环境影响评价技术导则-大气环境》(HJ2.2-2018)评价等级的划分原则,大气环境影响评价工作等级为一级(判定详见 5.1.1.2 节)。

1.5.2 地表水环境影响评价等级确定

拟建项目建成后,外排废水经过有效治理后达标排放,进入华中表处园电镀废水深度处理车间处理后排放,为间接排放。根据《环境影响评价技术导则地表水》(HJ2.3-2018)要求,本项目地表水环境影响评价等级为三级 B。

1.5.3 声环境影响评价等级确定

该项目厂址位于工业园区,声环境功能总体划分为 3 类功能区;目前本项目场界外 200m 内没有声环境敏感目标;建设项目前后评价范围内敏感目标噪声级增高量在 3dB(A)以下。根据《环境影响评价技术导则 声环境》(HJ2.4-2009),该项目声环境影响评价等级为三级。

1.5.4 地下水环境影响评价等级确定

(1) 建设项目类别

根据《环境影响评价技术导则 地下水》(HJ610-2016),该项目为"表面处理及热处理加工"项目,属于附录A中的III类建设项目。

(2) 建设项目场地的地下水环境敏感程度

项目建设项目所在区域地下水环境功能规划为III类,该项目周边没有取用地下水的居民,没有特殊要求保护的资源,没有集中式饮用水水源地保护区。因此该项目地下水环境敏感程度判定为"不敏感"。

(3) 建设项目地下水评价工作等级判定

综上,根据 HJ610-2016,该项目地下水环境影响评价工作等级为三级。

1.5.5 环境风险影响评价等级确定

根据《建设项目环境风险评价技术导则》(HJ 169-2018),环境风险评价工作等级划分为一级、二级、三级。根据建设项目涉及的物质及工艺系统危险性和所在地的环境敏感性确定环境风险潜势,按照下表确定评价工作等级。风险潜势为IV及以上,进行一级评价;风险潜势为III,进行二级评价;风险潜势为III,进行三级评价;风险潜势为III,进行三级评价;风险潜势为II,进行三级评价;风险潜势为II,可开展简单分析。

表 1.5-2 环境风险等级划分

环境风险潜势	$IV \cdot IV^+$	III	II	I		
评价工作等级		1.1	三	简单分析 a		
a 是相对于详细	评价工作内容而	言,在描述危险物质	质、环境影响途径、	环境危害后果、风		
险防范措施等方面给出定性的说明。见附录 A。						

本项目大气环境风险潜势为 II 级,地表水环境风险潜势为 I 级,地下水环境风险潜势为 I 级,环境风险潜势综合等级为 II 级(详见 6.3 章节分析)。对比上表,本项目环境风险评价工作等级为三级。

1.5.6 土壤环境影响评价等级

根据《环境影响评价技术导则 土壤环境》(HJ964-2018),本项目为金属制品制造项目,属于污染影响型 I 类行业。本项目租用华中表处园内 301#厂房4楼,占地约 2567m²,主要为永久占地,属于小型;项目所在地土壤及周边土壤均为工业园用地,周边不存在耕地、园地、牧草地、饮用水水源地或居民区、学校、医院、疗养院、养老院等土壤环境敏感目标的及其他土壤环境敏感目标的,项目所在区域土壤属于"其他情况",土壤环境敏感程度判定为"不敏感"。最终确定本项目土壤环境影响评价等级为二级。

表 1.5-3 土壤污染影响型评价工作等级划分表

占地规模									
评价工作等级		I类			II类			III类	
敏感程度									
****	大	中	小	大	中	小	大	中	小

敏感	一级	一级	一级	二级	二级	二级	三级	三级	三级
较敏感	一级	一级	二级	二级	二级	三级	三级	三级	-
不敏感 一级 二级 二级 三级 三级 三级									
注: "-"表示可不开展土壤环境影响评价工作。									

1.5.7 生态环境影响评价等级

本项目租用华中表处园内厂房,占地面积约为 2567m²,远小于 2km²,依据《环境影响评价技术导则生态影响》(HJ19-2011)中 4.2.1 规定,确定该项目生态影响评价工作等级为**三级**,本评价只提出适当的生态补偿要求和措施。

1.5.8 评价范围

根据项目环境影响评价工作等级,本项目各环境要素的评价范围见下表。

评价因子	评 价 范 围
地表水	以荆州中环水业有限公司排入长江排污口上游 500m 至下游观音寺常规监测断
地衣水	面 9300m 范围
环境空气	以项目厂址为中心区域,自厂界外延 D _{10%} 的矩形区域,本项目 D _{10%} 为 156m,
小児工 (小于 2.5km, 大气评价范围为边长 5km 的矩形区域
噪声	厂界及外围 200m 内范围
	大气环境: 以本项目涉及的危险源为中心, 半径 3km 范围内的区域
┃ ┃ 环境风险	地表水环境:以荆州中环水业有限公司排入长江排污口上游 500m 至下游观音
小块八唑	寺常规监测断面 9300m 范围
	地下水环境:项目场地所在的整个水文地质单位(以地下水分水岭为界)
地下水	项目场地所在的整个水文地质单位(以地下水分水岭为界)
土壤环境	荆州恒镁表面处理科技有限公司占地范围,以及荆州恒镁表面处理科技有限公
上塚小児	司占地范围外、0.2km 范围内的区域
生态环境	厂区及周围 200m 内范围

表 1.5-4 项目评价范围一览表

1.6 相关规划及环境功能区划

1.6.1 荆州市城市总体规划

根据《荆州市城市总体规划(2011-2020)》中的相关内容:

荆州市产业发展总体战略为: "重点发展汽车零部件、化工、石油设备制造、电子、生物医药等产业及旅游业", "第二产业:重点发展汽车零部件、化工、石油设备制造、电子等战略性产业",本项目为900万件/年汽车零部件及300万件/年电器配件表面处理生产线项目,与荆州市产业发展总体战略相符。

荆州市产业空间布局规划为: "荆州市中心城区以机械制造、轻工纺织、精细化工、电子、生物医药、新能源、新材料、旅游、商贸为主导",本项目选址与荆州市产业空间布局相符。

荆州市近期建设发展重点区域规划为: "重点建设城东工业区,发展机械制造、轻工纺织、精细化工、电子、生物医药、新材料等工业"。

1.6.2 荆州开发区规划

(1) 开发区发展背景

荆州开发区是荆州经济技术开发区和荆州高新技术产业园区的规范化简称,于1992年5月挂牌成立,并于同年8月经湖北省人民政府批准为省级开发区。

1994年11月,经湖北省人民政府批准在原沙市玉桥经济技术开发区内设立 沙市玉桥高新技术产业开发区,12月,荆州地区和沙市市合并成立荆沙市后, 市委、市政府筹备组决定撤消原沙市玉桥经济技术开发区管委会,设置荆沙市 玉桥经济技术开发区管委会,同时将沙市区联合乡整体划归开发区管辖。

1997年2月,省政府同意荆沙市玉桥经济开发区和荆沙市玉桥高新技术产业开发区分别更名为荆州经济技术开发区和荆州高新技术产业开发区;同年8月,市政府将盐卡新港区纳入开发区管辖。

2000年7月,荆州市委、市政府将沙市农场整体划入开发区管辖。荆州开 发区管委会是市政府的派出机构,为正县级单位,行使市级行政经济管理权限, 负责对开发区实行统一领导,统一管理。

2011年6月,荆州开发区晋升为国家级荆州经济技术开发区。

2011年12月,随着荆州成为第五个国家级承接产业转移示范区,荆州开发区从而获得了国家级经济技术开发区和国家级承接产业转移示范区两块金字招牌。

2012年4月,荆州开发区再次扩容,托管沙市区岑河镇四个村、资市镇三个村以及江陵县滩桥镇、岑河原种场等区域。

2016年12月,荆州开发区被中质协质量保证中心授予ISO9001:2015质量管理体系认证证书。

2017年8月,根据荆州市委、市政府《关于推进"一城三区、一区多园"

建设的实施意见》,荆州开发区设置新能源汽车及装备智能制造产业园、军民融合产业园暨光通讯电子信息产业园、绿色循环产业园、绿色建筑产业园和临港物流产业园五大产业园区。

湖北省环保厅于 2010 年 9 月对《荆州经济开发区规划环评》进行了批复, 其批复的开发区范围为:经北至豉湖渠和荆岳铁路规划线,西南角至锅底渊路, 南至长江及江北农场,东至沙市区岑河镇,西至豉湖路、三湾路,总面积约为 55.07km²(不含发展备用地)。随着"产业转移"、"壮腰工程"等规划的相继实施, 荆州市进入了一个新的发展时期。为将目前已经形成的两个相对集中的工业聚 集区(化港河两侧以及江陵滩桥镇观音寺港区附近)功能整合,合理化管控布 局,荆州经济开发区管委会启动了《荆江绿色循环产业园控制性详细规划 (2014-2030)》的编制,目前,该规划环评报告已取得审查意见。

按照地理位置本项目所在的军民融合暨光通讯电子信息产业园 A 区不在 2010 年版本的荆州经济开发区规划环评规划范围内。荆州经济开发区管委会启动了《荆州经济技术开发区军民融合暨光通讯电子信息产业园 A 区控制性详细规划》的编制,该规划环评报告已取得审查意见(荆环保审文[2018]33号)。

(2) 规划产业发展

重点发展精细化工产业,兼顾医药化工、石油化工、煤化工、建材、表面 处理和皮革等已经具备一定产业聚集规模的产业。借鉴东部及海外化工科技发 展,将生物工程、新材料科学与精细化工产业进行融合,重点研究新催化技术、 新分离技术、超细粉体技术等;进一步发挥荆州长江岸线化工专用码头资源优 势,大力开发地下卤水资源,加快发展盐化工,着力打造国内一流、国际竞争 力强精细化工产业基地。

(3) 规划环评意见落实情况

目前开发区已经有一座污水处理厂投入运行,即纺织印染工业园 8 万吨污水处理厂(中环水业),同时排江工程和 5.2 万吨排污口已经获得省水利厅的批复。目前开发区排水管网沿着现有道路敷设,基本涵盖了化港河以北的区域。纺织印染工业园以外的企业废水在经过自建污水处理设施处理后经排江通道排江。为适应开发区发展,正在建设豉湖渠以南的配套管网和提升泵站工程。

荆州开发区各项固废均能做到妥善处理处置,其中生活垃圾统一运抵荆州

旺能垃圾焚烧发电厂进行焚烧处理,一般工业固废绝大部分可以循环利用,危险废物在当地环境保护部门的监管下均委托资质单位统一处置。

开发区经济发展,实际辖区范围已经超出省厅批复开发区范围。道路及相应给水、排水、燃气等基础设施覆盖了开发区大部分区域,在实施基础设施的同时,开发区正在逐步落实区域内生态补水、水系连通和生态修复工程,在保障防洪、雨污水妥善排放的同时积极开展区域内水生态环境。

根据荆州市委市政府"一城三区、一区多园"战略构想,荆州开发区的新能源汽车及装备智能制造产业园以新能源汽车、汽车零部件制造、装备智能制造为主导产业;军民融合产业园暨光通讯电子信息产业园以光通讯、电子信息为主导产业;绿色循环产业园以绿色化工、纺织印染服装、生物医药为主导产业;绿色建筑产业园以绿色建材、装配式建筑及部品部件为主导产业;临港物流产业园以临港产业、现代物流、综合保税物流为主导产业。已经入驻企业正在逐步实施产业分类后的调整,拟入驻企业按照荆州开发区一区多园产业发展导向实施"对号入驻"。

1.6.3 军民融合暨光通讯电子信息产业园 A 区控制性详细规划

(1) 发展目标

依托该园区所处位置,有便利的交通条件,以《荆州市"一城三区"一区多园产业规划布局》为依据,积极深化园区土地利用效益,提升土地价值,完善城镇交通系统,加强设施配套,建设成为节约集约利用土地,绿色、生态的工业园区。

(2) 工业园定位

抓住国家级荆州开发区承接产业转移优势,转变经济发展方式,规划对该片区的功能定位为:光通讯和表面处理产业园区。

(3) 工业园规模

军民融合产业园暨通讯电子信息产业园 A 区位于岑河农场北部,西侧、南侧为新能源汽车及装备制造产业园,北侧为机电装备制造产业园,东侧为上海大道。规划范围东起上海大道,西至深圳大道,北临豉湖渠路,南抵亿均路,规划总用地面积为 282.14ha。

(4) 工业园土地利用性质

本园区规划城镇建设用地 282.14 公顷。

①工业用地布局

园区内工业用地为"一类工业用地",用地面积 167.32 公顷,占城市建设用地 59.30%。

②道路与交通设施用地布局

园区的道路与交通设施用地面积31.46公顷,占城市建设用地11.15%。

③绿地布局

园区内绿地主要为防护绿地,绿地面积为83.36公顷,占城市建设用地29.55%。上海大道沿线规划30米宽防护绿带,西湖路两侧规划15米宽防护绿带。上海大道西侧设置20米的防护绿带。

(6) 工业园基础设施规划

①给水:由市政给水管网供给,该区内有深圳大道和沙岑路 DN600 现状给水管二根。按照相关指标,给水水量预测为 18768t/d。

外消防:同一时间内火灾次数一次,一次灭火用水量根据片区内最大民用建筑物体积确定,但不得小于30L/S。沿道路布设消火栓,间距不大于120m。

管网布置:给水管网成环网布置,给水干管沿区内干道布置,DN600-DN200, 管网末稍压力应不小于 0.28MPa 管径在。

②排水:区域排水体制采取雨污分流制。

雨水: 片区内现有深圳大道和上海大道雨水沟 B×H=12+27×2.4 米及美的路 B×H=1.8×1.4m 一条, 其他暂未建成雨水管道。

污水:现状污水管道有深圳大道和上海大道及美的路 D700-D1600-1500。其他暂未建成污水管。

a.污水量预测:污水量按总用水量的80%计,约1500吨/日。

b.在南北向道路上规划污水干管,污水输送至中环水业污水处理厂。污水排放应符合《污水综合排放标准》(GB8978-1996),生活污水经化粪池处理后方可排入市政污水管道,工业废水排入城市污水系统的水质应符合《污水排入城市下水道水质标准》(CJ3082-1999)的要求,处理后的污水应符合《城市污水处理厂污水污泥排放标准》(CJ3025-93)的要求。

规划区内汇水面积: 282ha, 雨水流量 33000l/s。片区内雨水最大管径

B×H=1.8×1.4 米, 坡度 0.001。

③燃气:目前农技路北段天然气中压管道已建设。

气源:气源引自农技路北段现状天然气管。

近期以天然气为主,液化石油气作为辅助气源,按照《荆州市中心城区天然气工程专业规划》(2015-2030),远期以天然气为主;并发展 CNG(压缩天然气)减压站、LNG(液化天然气)气化站和部分 CNG/LNG 瓶组供气,满足用户不同的用气要求。

输配管网:园区内采用中压一级系统环状供气。中压管网设计压力 0.4Mpa,运行压力 0.3Mpa。

技术指标:居民耗热定额取 45×10⁴Kcal/人·年(Kcal: 千卡)

天然气低发热值: 8500Kcal/Nm3。

用气不均匀系数取:居民用气定额: 45×10^4 Kcal/人•年,K月=1.2,K日=1.15,K时=3.0。远期气化率 100%。不考虑工业用气,片区内远期总用气量约为: 360Nm^3 /d。

④电力:用电负荷预测:一类工业用地用电:200KW/hm²、道路与交通设施用地用电:20KW/hm²、绿地与广场用电:5KW/hm²、同时系数0.7、本区总计算负荷约为24157KW。

变电站:军民融合产业园规划由 110KV 常湾变、110KV 宿驾变供电。

110KV 网络: 110KV 常湾变电源利用楚都变至观音垱变的 2 回 110KV 线路供电,110KV 宿驾变由周家岭变至宿驾变的 1 回 110KV 线路供电,潜江变至宿驾变的 1 回 110KV 线路供电。

10KV 网络:由宿驾变出 4 回 10KV 线路沿东西向道路两侧向西敷设,负责产业园区供电;由观音垱变出 1 回 10KV 线路沿道路敷设,负责产业园区供电;由常湾变出 1 回 10KV 线路沿道路敷设,负责产业园区供电,10KV 线路之间由联络开关和环网设施进行联络。

380V/220V 网络:本区内 380/220V 低压配电线路以变电台区或箱变为单元 采用放射式配电方式,低压供电半径不超过 250m。

⑤道路规划:规划主干路有深圳大道、锦辉路、镍业路、镍业南路、农技路、沿江大道,道路红线宽度为40-80m,深圳大道道路红线宽度80m,锦辉路、

镍业路、镍业南路道路红线宽度 50m, 农技路、沿江大道道路红线宽度 40m; 次干路有金美路, 道路红线宽度为 24m。

园区建设用地面积 397.96ha,城市道路总长度为 10.08km,路网密度达到 2.53km/km²,道路总面积为 29.74ha。

1.6.4 环境功能区划

规划军民融合暨光通讯电子信息产业园 A 区环境功能区划具体情况见表 1.6-1。

环境要素	区域	标准	类(级)别
地表水环境	北港河、豉湖渠、七支渠、三支渠、 南北渠	《地表水环境质量标准》	V类
	长江(荆州)段	(GB3838-2002)	Ⅲ类
地下水	规划区域内	《地下水质量标准》	Ⅲ类
地工水	//// / / / / / / / / / / / / / / / / /	(GB/T14848-2017)	III 天
大气	规划区域内	《环境空气质量标准》 (GB3095-2012)	二级
	居住区	// 李开接氏具仁体//	2 类
声环境	工业区	《声环境质量标准》 (GB3096-2008)	3 类
	主次干道道路两侧一定范围内	(903090-2008)	4a 类
土壤环境	规划区域内	《土壤环境质量 建设用地土壤污 染风险管控标准(试行)》 (GB36600-2018)	第二类用地限 值

表 1.6-1 园区环境功能区划一览表

1.7 主要环境保护目标

(1) 大气环境保护目标

主要保护目标为拟建项目评价范围内(以项目厂址为中心区域,边长 5km 的矩形区域)的环境敏感点,大气环境质量满足《环境空气质量标准》(GB3095-2012)二级标准。

(2) 地表水环境保护目标

地表水环境保护目标是长江,保证水体水质满足《地表水环境质量标准》 (GB3838-2002)Ⅲ类标准要求。

(3) 地下水环境保护目标

区域地下水水质满足《地下水质量标准》(GB/T14848-2017) III 类标准。

(4) 声环境保护目标

控制主要设施噪声及运输车辆噪声值,保护目标是确保项目在建设期间和

建成后其周围区域声环境符合该区域的声环境功能要求。

(5) 固体废物控制目标

控制本项目在建设期的建筑垃圾和营运期间固废对周围环境的影响,使固 废得到妥善处理。

在环境评价过程中深入实地调查了周围环境保护目标,重点调查了周围的 地表水体、集中居住区等。本项目环境保护目标及其基本情况见表 1.7-1。

表 1.7-1 建设项目选址地周围主要环境敏感点一览表

要	环境敏感点	->- D.		规	 !模	
素	名称	方位	距离 (m)	户	人	保护级(类)别
	麻林村	E, NE	560	68	306	
	张毛台	NE	1440	4	20	
	小曾家台	NE	1500	17	68	
	曾家台	NE	2170	18	81	
	青岗岭分场	NE	2175	58	232	
	林家台	NE	2549	10	47	
	陟屺桥	NE	2650	59	296	
	左闸口	NW	1200	5	20	
环	小王家河	NW	1450	28	140	《环境空气质量标
境	魏家台	NWW	2450	58	265	准》
空	跃进村	SWW	2600	12	60	(GB3095-2012)
气	新宿驾场	SW	2184	101	494	中二级标准
	竺桥社区居 委会	SSW	2167		35	
	西湖分场	SE	2040	10	45	
	原种分场	SE	2820	35	175	
	王拨台	SE	2855	15	70	
	万家台	SEE	1140	10	46	
	姚家岭	SEE	1600	28	112	
	筒家河	SEE	2100	30	138	
地	长江 (荆州 城区)	W	12770	大河		《地表水环境质量 标准》 (GB3838-2002) III类水域标准
表 水	豉湖渠	N	300	小河		《地表水环境质量 标准》 (GB3838-2002)V 类水域标准

吉					《声环境质量标
严 环	⊏⊞	IIII I I II	,	,	准》
. '	厂界	四周	/	/	(GB3096-2008) 3
境					类

1.8 评价技术路线

该项目环境影响报告书工作内容包括两个主要部分,一是资料收集、现状 监测、工程分析与预测、数据处理;二是环境影响报告书的编制与审查。

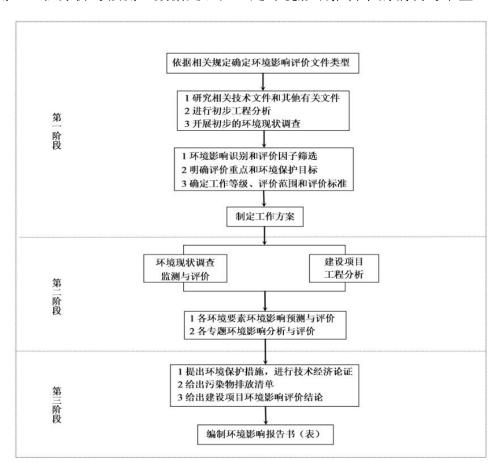


图 1.8-1 环境影响评价工作程序图

2 建设项目概况

2.1 项目建设地点

本项目租用湖北金茂环保科技有限公司华中表面处理循环经济产业园 301# 厂房 4 楼。

荆州地处长江中游、湖北省中南部,位于沃野千里、美丽富饶的江汉平原腹地,素有"文化之邦、鱼米之乡"的美誉,是一座古老文化与现代文明交相辉映的滨江城市。全市国土面积 1.41 万平方公里,总人口 660 万,下辖荆州区、沙市区、江陵县、松滋市、公安县、石首市、监利县、洪湖市 8 个县市区和荆州开发区、纪南文旅区、荆州高新区 3 个功能区。全市有 13 个街道办事处、102个乡镇、2619个村居委员会。先后被确定为国家历史文化名城、中国优秀旅游城市、国家园林城市、国家卫生城市、全国双拥模范城市、全国第二批城市设计试点城市、第二批"中德生态示范城",是全国优质农副产品生产基地和精细化工基地、国家级承接产业转移示范区、全国老工业基地调整改造规划区、全国大遗址保护示范区、国家重要的公路交通枢纽和长江重要港口城市。

根据荆州市委、市政府《关于推进"一城三区、一区多园"建设的实施意见》,荆州开发区设置新能源汽车及装备智能制造产业园、军民融合产业园暨光通讯电子信息产业园、绿色循环产业园、绿色建筑产业园和临港物流产业园五大产业园区。其中军民融合产业园暨通讯电子信息产业园分为A区和B区,军民融合产业园暨通讯电子信息产业园A区位于岑河农场北部西侧。湖北金茂环保科技有限公司华中表面处理循环经济产业园位于湖北省荆州市荆州开发区军民融合产业园暨通讯电子信息产业园A区美的路以北地块。具体地理位置见附图1。

2.2 华中表面处理循环经济产业园建设情况

2.2.1 基本情况

湖北金茂环保科技有限公司为金茂源环保控股有限公司的子公司,金茂源环保控股有限公司目前拥有惠州龙溪环保电镀产业园及天津滨港电镀产业基地 2 座电镀产业基地,拥有丰富的规划建设、运营管理经验。为积极响应国家环 保政策及湖北省荆州市的发展规划战略,湖北金茂环保科技有限公司拟投资 22 亿建设华中表面处理循环经济产业园,集中荆州市及其周边地区电镀工业企业,建设电镀产业园区,实行电镀产业统一规划,资源有效利用,壮大电镀行业产业链,统一环境治污。

华中表面处理循环经济产业园主要进行电镀表面处理,电镀种类主要包括镀锌、镀铜、镀镍、镀铬、镀镉、镀金、镀银等,不涉及镀铅、镀汞、镀砷。

华中表处园基本情况见下表 2.2-1,目前华中表处园用地(土地证见附件)为湖北金茂环保科技有限公司占地 146650.54m²,金源(荆州)环保科技有限公司占地 179330.7m²,金源(荆州)环保科技有限公司为湖北金茂环保科技有限公司全资所有子公司。

项目名称	华中表面处理循环经济产业园项目		
	生产区: 荆州开发区军民融合暨光通讯电子信息产业园美的路与深		
建设地点	圳大道交叉口东北		
	生活区:上海大道与新沙岑路交叉口西北		
总投资	22 亿元		
工作制度	入驻企业年工作时间约 300d,每天 24h;		
上作刺及	电镀废水深度处理车间运行时间为 350d, 每天 24h		
劳动定员	动定员 企业入驻完毕,共计约 20000 人		
建设时间	建设时间 2018年8月~2024年3月,分四期建设		
建设规模	设规模 年电镀面积 1453 万 m ²		
占地面积	生产区规划占地面积 652495.88 m²(978.74 亩); 总建筑面积 745685m²		

表 2.2-1 华中表面处理循环经济产业园项目基本情况一览表

2.2.2 规划产品方案

华中表处园规划镀种涉及镀锌、镀镍、镀铬、镀银、镀铜、镀镉等,电镀材质涉及金属件及塑料件,主要产品包括镀锌件、镀镍件、镀银件、镀铬件以及五金制品等。本项目不涉及镀铅、镀汞、镀砷,镀镉产品仅用于军工产品及民用品的船舶及弹性零件。华中表处园电镀方案见表 2.2-3,规划总电镀面积约1453万 m²,其中镀铬包括镀装饰铬 176万 m²/a,镀硬铬 88万 m²/a。本项目镀种为镀锌、镀镍/铬、镀铜镍铬、镀镍符合其产品规划。

表 2.2-2 华中表处园规划镀种一览表

电镀类型	主要应用	电镀面积(万 m²/a)
镀锌	钢铁零部件和结构件防护	351
镀镍	低碳钢、铝合金、铜合金等基材防护;也应用于自行车、钟表、仪表、相机等零件防护装饰	274
镀金	主要用作装饰性镀层,如镀首饰、钟表零件、艺术品等;也广泛应用于精密仪器仪表、印刷板、集成电路、电子管壳、电接点等要求电参数性能长期稳定的零件电镀。	22
镀银	电器、仪器、仪表和照明用具制造	32
镀镉	弹性工件、航空航海及电子工业零部件	32
镀铬	化工设备、微电子器件、医疗器械、汽车、自行车、 家电、太阳能吸收器等装饰及防护	264
镀铜	主要用作工件预镀层	202
阳极氧化	汽车标识、墙面浮雕、廊柱、手机及笔记本电脑外壳等	109
化学镀	电子、阀门制造、机械、石油化工、汽车、航空航天	109
其他电镀	如锡用于汽车活塞环、汽缸壁、汽车轴承等	58
合计		1453

2.2.3 华中表处园主要建设内容及建设进度

华中表处园基础设施组成及各工程的建设进度详细见下表:

表 2.2-3 华中表处园基础设施组成及建设进度一览表

类别	名称	原环评规划建设内容	建设进度
主体工程	厂房	54栋厂房,总建筑面积638940m²	目前在建 101、102、201、 202、301、302 六栋厂房, 预计 2020 年 6 月底完工
辅助 工程	锅炉房	设置1台10t/h燃气锅炉、3台20t/h燃气锅炉 (2用1备)	暂未建
	危化品存储	3座电镀材料储存仓、1座氰化物仓库、2座酸	建设 1 座硫酸仓库、1 座盐酸仓库、1 座硝酸仓库、1 座硝酸仓库、1 座双氧水仓库、1 座电镀材料仓库、1 座氰化物仓库、1 处储罐区,预计 2020 年7月底完工
公用工程	供水	市政供自米水, 设直2000m ³ 消防水池1座, 9000m ³ 生产水池1座	建设 2000m ³ 消防水池 1座,12000m ³ 生产水池1座, 土建主体工程已完成,目前 在安装设备,预计 2020年 6月底完工
	1 471: //(采用雨污分流制,雨水管网和生活污水管网为 地埋式,初期雨水收集处理后排放,废水管网	

		敷设在地下综合管廊中	
	供气	市政供天然气	暂未建
	供电	市政供电,产业园自建110KV变压站1座	变压站暂未建,由园区市政 供电,华中表处园内供电系 统与基础设施同期建设
	供汽		锅炉在建设中,蒸汽管网预 计 2020 年 11 月底完工
	管网	设置综合管廊1座,总长约10km。产业园除蒸 汽管网外,其余管网均布置在综合管廊内。	一期建设综合管廊 1.2km, 预计 2020 年 5 月底完成土 建施工, 2020 年 7 月底达 到排水条件。
	废气处理	池2座 盐酸储罐废气:碱液喷淋塔1座 食堂油烟废气:油烟净化装置2 在	恶臭废气治理与电镀废水深度处理车间同期建设、盐酸储罐废气的碱液喷淋塔同期建设,油烟净化装置与食堂同期建设,预计2020年7月底完工
	噪声治理	隔声、减振、消声等	设备安装时同期建设
环保 工程	环境风险	设置2000m ³ 风险应急池1座、6000m ³ 风险应急 池2座	在建 2000m ³ 风险应急池 1 座、6000m ³ 风险应急池 1 座,预计 2020 年 6 月底完 工
	废水处理		
		生活区生活废水依托荆州中环水业有限公司 处理后外排长江 设置740m²废弃物处置中心(危废暂存间)1	生活区及配套暂未建
	固废处置	座	月底完工
		设置污泥处置中心1座,生产废水污泥经干化 后外运有资质单位处理	土建主体已完成施工,在防

华中表处园内厂房配置如下:

(1) 土建

土建全部完成,经建设主管部门验收合格,交付企业。企业只需根据自身需求进行二次装修。生产车间为一般防渗,企业根据环保要求及华中表处园管理要求分区域对生产车间进行防渗处理。

(2) 给水及消防水

华中表处园提供自来水、中水(回用水)供水管道,以上管道全部接入厂 房内部,预留阀门接口。

消防水:全部接入厂房内部,由消防主管部门验收,且入驻企业不得私自

改动。

(3) 排水

华中表处园采用"雨污分流、清污分流"制度。

- ①废水:生产废水分质分类收集,送入华中表处园配套的废水收集罐内,依托华中表处园内的管网送入电镀废水深度处理车间处理,车间生活污水经收集进生活污水收集池后处理,电镀废水深度处理车间设计处理量 27000m³/d,废水排放量为 16000 m³/d。
- ②雨水:华中表处园实施雨污分流,初期雨水经收集后排入风险应急池,进入电镀废水深度处理车间。
- ③污水管网:工艺废水按照一类污染物单独分流、离子态金属与络合态金属分流、氰化物废水宜单独分流(含氰化物废水须避免铁、镍离子混入)等原则进行"清污分流、分类收集、分质处理"。高浓废水按照高浓含铬废水、高浓含氰废水、高浓地面清洗水、高浓锌络废水、高浓化铜废水、高浓络合废水、高浓酸性废水、高浓有机废水、高浓重金属废水 9 类分类收集处理,生产废水预处理系统按照含镉废水、含镍废水、含铬废水、含氰废水、综合(含铜)废水、络合废水、前处理废水、阳极氧化废水 8 类分类收集处理,生活污水收集进入调节池。

华中表处园内采用地下综合管廊,由华中表处园统一规划、设计、建设和运营管理。华中表处园废水均以重力自流形式收集,地下综合管廊内铺设有 17 类生产废水收集管网,采用管径为 DN50~DN400 的 UPVC 管。

(4) 电

华中表处园给车间都配有低压出线开关点,低压出线开关以下部分由入驻 企业自行接入生产线。

2.2.4 华中表处园规划污水处理情况

华中表处园内规划建设电镀废水深度处理车间的设计处理总规模为27000m³/d,总回用水量11000m³/d,总外排水量为16000m³/d,分四期建设,废水收集池、配药间、污泥脱水间一次性建成;调节池分两期建设。项目生产区废水排放拟修建专用排水管网1条,于深圳大道(纺印二路)汇入排江工程管网,经排江工程泵站提升排入长江。

电镀废水深度处理车间分类分质处理废水,规划建设内容与目前实际建设 内容对比见下表,具体处理工艺见图 2.2-1。

表 2.2-4 电镀废水深度处理车间规划与建设内容情况一览表

序号		功能区	规划内容、规模	目前建设内容(一期 5000m³/d)	
1			高浓络合废水(11)处理系统,300m³/d	宣述应业八头 0米 宣述令协应业 403/1 宣述令复应	
2			高浓碱锌废水(12)处理系统,300m³/d	高浓废水分为 9 类, 高浓含铬废水 40 m³/d、高浓含氰废水 40 m³/d、高浓含氰废水 40 m³/d、高浓锌络废水 200 m²/d、高浓锌络废水 200 m²/d、高浓锌格废水 200 m²/d、高浓锌格废水 200 m²/d、高浓锌格废水 200 m²/d、高浓锌格废水 200 m²/d、高浓含氰胺	
3		高浓废水处理	高浓化铜废水(13)处理系统,300m³/d		
4		同似波小处垤	高浓有机废水(14)处理系统,600m³/d	m/d、高水化钠及水 60 m/d、高水组	
5			高浓酸性废水(15)处理系统,500m³/d	废水 80 m³/d	
6			高浓重金属废水(16)处理系统,600m³/d	/ / / / / / / / / / / / / / / / / / /	
7			除油废水预处理系统,2340m³/d		
8			综合废水(包括含铜废水、含锌废水、磷化废水、酸碱废		
8			水)预处理系统,4080m³/d		
9			含氰废水预处理系统,2340m³/d	生产废水预处理系统分为 8 类,含镉废水 200 m³/d、含镍	
10		废水预处理	南水新 加珊	含镍废水预处理系统,1680m³/d	废水 400 m³/d、含铬废水 760 m³/d、含氰废水 360 m³/d、
11		及小顶处理	含铬废水预处理系统,5850 m³/d] 综合(含铜)废水 600 m³/d、络合废水 310 m³/d、前处理	
12	废水		络合废水预处理系统,1170 m³/d	废水 1000 m³/d、阳极氧化废水 350 m³/d	
13	处理		混排废水 (包括企业地面清洗水、跑冒滴漏水和企业混排		
13			废水)预处理系统,2340 m³/d		
14			含镉废水预处理系统,600m³/d		
15			回用水处理系统1(处理除油废水、综合废水、含氰废水、		
13		中水回用处理	含镍废水),处理能力 10440m³/d,回用水 7850 m³/d	 回用处理系统的处理能力 2270m³/d, 企业回用 1110 m³/d	
16		一小台川之生	回用水处理系统 2 (处理含铬废水),处理能力 5850m³/d,	四角发星系列的发星配列 2270m/d,正亚四角 1110 m/d	
10			回用水 3150 m³/d		
17			浓水处理系统1(处理回用水处理系统1浓水和高浓废		
		浓水处理	水),7890m ^{3/} d	浓水进综合废水处理系统	
18			浓水处理系统 2(处理含铬 RO 浓水), 2700m³/d		
			综合废水处理系统(处理络合废水、混排废水、含镉废水、		
19		综合废水处理	浓水处理系统1和浓水处理系统2、生产区生活废水),	综合废水处理系统规模为 1390m³/d	
			16000 m ^{3/} d		

序号	功能区	规划内容、规模	目前建设内容(一期 5000m³/d)
20		生活污水(电镀企业)经加工区的生化池初步处理后进入	生活污水收集进入调节池,规模 200 m³/d,再进综合废水
20		综合废水处理系统	处理系统
21	工作/及小	生活区生活废水进园区市政管网后,依托荆州中环水业有	生活区生活废水进园区市政管网后,依托荆州中环水业有
2.1		限公司处理	限公司处理
15	污泥干化	设置 1 套污泥低温干化机,去湿量 300kg/h	设置 1 套污泥低温干化机
		电镀废水深度处理车间总排口设置在线监测装置1套,监	
		测因子包括流量、pH、COD、NH3-N;含铬废水预处理	
17	在线监测	设施排放口设置在线监测装置1套,监测因子包括流量、	将按照要求建设
		总铬、六价铬;含镉废水预处理设施排放口设置在线监测	
		装置1 套, 监测因子包括流量、总镉; 雨水排放口均设置	
		在线监测装置,监测因子pH	
17	环境风险	设置应急事故水池 3座,2000m3风险应急池 1座,6000 m3	将按照要求建设
17	~ 1.50 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	风险应急池 2 座	101以灬女水廷仪

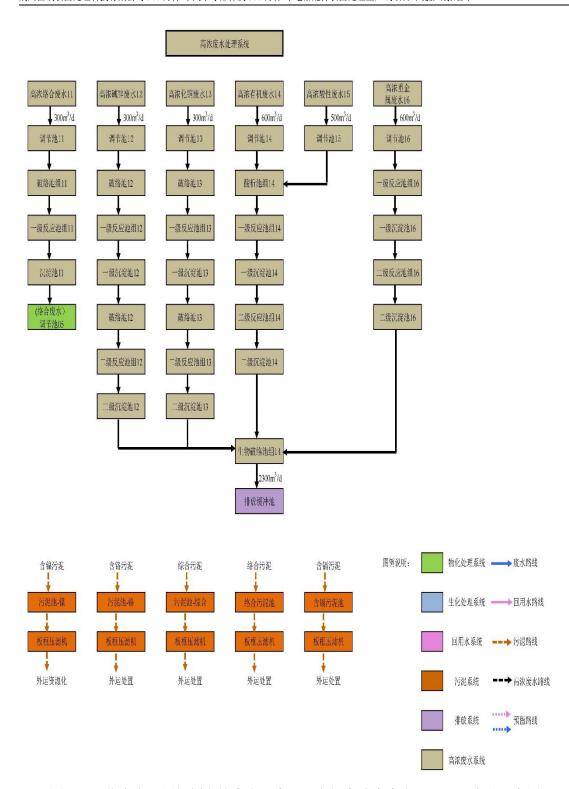


图 2.2-1 华中表处园规划电镀废水深度处理车间高浓度废水处理工艺流程示意图

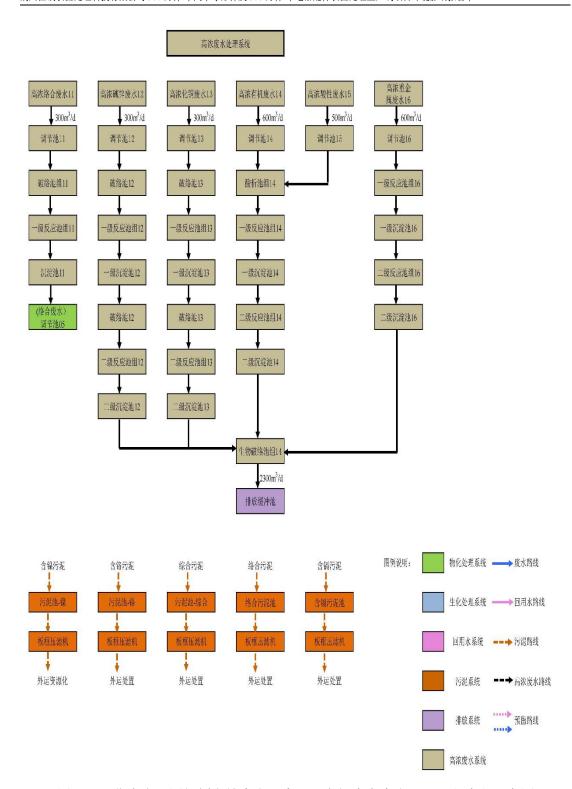


图 2.2-2 华中表处园规划电镀废水深度处理车间生产废水处理工艺流程示意图

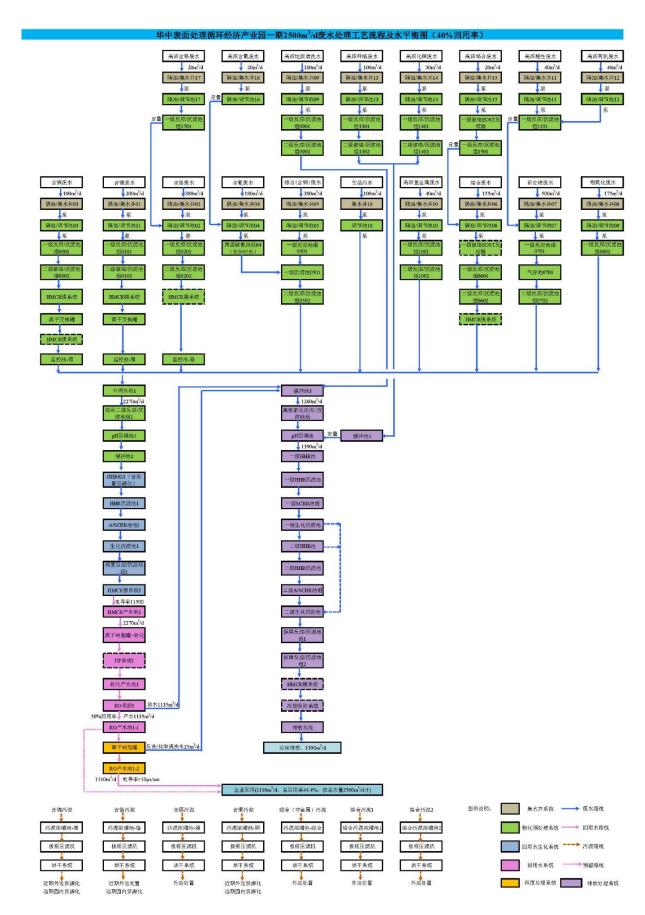


图 2.2-3 华中表处园电镀废水深度处理车间一期(5000m³/d)工艺流程示意图

2.2.5 华中表处园平面布局

根据人车分流原则,华中表处园北侧主要布置生产厂房,产业园南侧主要布置办公楼、服务中心、食堂等生活设施;西南侧布置锅炉房及变电站;电镀废水深度处理车间、化学品仓库、废弃物处置中心位于产业园中部,利于生产废水收集处理。办公楼临近主干道美的路,周边无生产车间,符合环境洁净、靠近主要人流出入口的原则。电镀废水深度处理车间各类建筑物、构筑物集中布置,各类化学品仓库集中布置,符合在满足生产流程和使用功能的前提下,建筑物、构筑物等设施联合、集中、多层布置的原则。

化学品仓库及电镀废水深度处理车间配套储罐区位于产业园西北侧,临近厂区边缘,地势平坦,位于厂区地下水流向的下游地段及全年最小频率风向的上风侧;罐区上无架空供电线跨越;危化品仓库及储罐区主要临近物流仓库、停车场、电镀废水深度处理车间,但危化品仓南侧临近办公/检测楼,危化品仓库及储罐区均配备废液收集等相关环境风险设施。

本项目租用的 301#厂房位于产业园内东南侧,301#厂房北侧为 302#厂房, 西侧为园区餐饮中心,南侧为消防水池、应急事故池,东侧为 201#厂房。

华中表处园区内及其卫生防护距离范围内居民已拆迁完毕。

2.3 拟建项目基本情况

项目名称:900万件/年汽车零部件及300万件/年电器配件表面处理生产线项目

单位名称: 荆州恒镁表面处理科技有限公司

项目性质:新建

建设地点:荆州开发区华中表面处理循环经济产业园 301#厂房 4 楼

占地面积: 3.85 亩

总投资: 2000 万元

2.4 生产规模及产品方案

本项目共建设 4 条电镀生产线,分别为全自动环形式(72 臂)挂镀(锌) 生产线、全自动环形式(60 臂)挂镀(镍/铬)生产线、全自动环形式(80 臂) 挂镀(铜镍铬)生产线和全自动环形式(72 臂)挂镀(镍铬)生产线。加工零 件是汽车零部件和电器配件,根据采购方的要求产品类型达到电镀要求,生产 产品及规模详细见表 2.4-1:

表 2.4-1 产品方案

					电镀			
序号	产品	单位	生产规模	镀种	厚度(μm)	面积		
					序及(μm)	(万 m²/a)		
1	PL 汽车头枕骨架	PCS/年	300万	镀镍/铬	15/0.7	1.5		
2	汽车座椅支架	PCS/年	300万	镀碱锌	15	1.5		
3	电子配件	PCS/年	300万	镀铜镍铬	0.7/15/0.7	1.5		
4	PL 汽车头枕骨架	PCS/年	300万	镀镍铬	15/0.7	1.5		

2.5 项目组成

本项目租赁华中表面处理循环经济产业园 301#厂房 4 楼,公辅工程、废水处理、固废处理等工程均依托华中表面处理循环经济产业园配套设施,主要建设内容及依托可行性分析详见表 2.5-1。

表 2.5-1 项目建设内容一览表

	L程名称	工程内容	备注	依托可行性	
主体工程	生产线	租用华中表面处理循环经济产业园 301#厂房 4 楼, 厂房面积 75m×24m, 高度 7.9m, 建设 4 条电镀生产 线	新建,位于301#厂 房4楼	华中表处园 101、102 等 6 栋厂房预计 6 月底完工,园区内厂房计划租赁给电镀企业使用,可依托	
	制冷	设置 2 台 10HP 冷冻机	新建,位于车间内		
 辅助工	供气	设置鼓风机 2 台 10HP、空压机 1 台 15HP	新建,位于车间内		
相助工	纯水制备	纯水制备系统 1 套,规模 5 m³/h	新建,位于车间内		
7生	实验室、化验 室	在车间内设置实验室、化验室,进行盐雾试验、测 厚、槽液化验	新建,位于车间内		
办公生	办公室	在租用厂房内设置办公区域	新建,位于车间内		
活	宿舍	租用周边住宅	依托		
储运工 程	原料存放	在租用厂房内设置存储区域,液体、固体分类储存。 地面采取 PP 塑料托盘防腐防渗,托盘内设 PP 塑料 格栅,设置 PP 塑料围堰。	新建		
	成品存放	在租用厂房内设置成品存放区域	依托华中表处园	原料区、成品区在301#厂房内分区布设,依托可行	
	给水	依托华中表处园内的供水工程	依托华中表处园	园区内给水管网预计 2020 年 7 月底完成,接通至各 厂房,依托可行	
	排水	依托华中表处园内的排水工程	依托华中表处园	园区内排水管网预计 2020 年 7 月底建成具备排水条件, 华中表处园区外至排江口的排水管网已建成, 依托可行	
工程	供电	依托华中表处园内的供电工程	依托华中表处园	园区电力系统配套厂区建设建成,由市政供电,依 托可行	
作	供热	依托华中表处园的供热管网,前期蒸汽来源于国电长源热电厂蒸汽,待华中表处园内天然气锅炉建成运行后,蒸汽来源于华中表处园内。车间内新增换热系统。	依托华中表处园	园区蒸汽管网预计 2020 年 8 月底建成,蒸汽来源于国电长源热电厂蒸汽,依托可行	

	废气	设2套酸雾收集处理设施,药水槽和挥发性槽全部设有抽风收集+酸雾净化塔处理+35m排气烟道排放(25HP风机=2台,风量24000M3/H)。 设1套铬雾收集处理设施,铬槽槽边抽风收集+铬酸雾回收塔+酸雾净化塔处理+35m排气筒排放(15HP风机=1台,风量13800M3/H),废气塔采用后吸式(三喷淋一除雾设计)。材质选用阻燃。 设1套氰化氢收集处理设施,铜槽槽边抽风收集+氰化氢净化塔处理+35m排气烟道排放(15HP风机=1台,风量13800M3/H)	企业新建,烟道依托 华中表处园	301#厂房东侧建设 6 个风道(4 个供企业使用, 2 个备用), 经处理后废气接入烟道排放, 依托可行
		分类设置废水管,从电镀槽至车间废水收集口之间 的废水管网由企业自建	企业新建	
环 保 工	污水收集与	依托车间1层的废水收集罐,厂房废水收集点至收 集罐、收集罐至产业园区废水处理站废水收集池管 网	依托华中表处园	废水收集罐、厂房废水收集点至收集罐、收集罐至 电镀废水深度处理车间废水收集池的管网与厂房同 期建设,预计 2020 年 7 月底完工,依托可行
程	处理	依托产业园内建设的废水处理厂进行处理。产业园污水处理厂设计处理能力 27000m3/d,排水量 16000m3/d,回用水量 11000m3/d,最终废水外排至长江。	依托华中表处园	一期建设 5000m³/d 处理系统,预计 2020 年 7 月底 可接纳企业废水,本项目各类废水量总计为 42.05m³/d,在园区可接纳能力内,依托可行(详见 7.1.2 章节)
		一般固废统一储存于产业园内的一般固废中心,产 业园统一清运处理;	依托华中表处园	一般固废中心同期设置,依托可行
	固体废物	自建危废临时暂存点,危险废物用专用容器盛装, 送至产业园内危险固废暂存间,委托有资质单位处 置;	依托华中表处园	危废暂存间预计 2020 年 7 月底完工,依托可行
		生活垃圾由垃圾桶收集后,由环卫部门统一清运处理。	依托华中表处园	垃圾桶与基础设施建设同期配置,依托可行
	车间防腐防 渗	车间防腐防 车间地面进行三布六油旱乙烧基防腐防滚处理		
环境风	消防系统	依托华中表处园内建设的消防系统,消防用水依托	依托华中表处园	消防水系统预计 2020 年 8 月完工,依托可行

险防范		华中表处园内消防水系统,华中表处园内设立微型		
工程		消防站1座。车间内按照消防安全布设消防设施。		
		依托华中表处园内事故应急池,华中表处园内共设		在建 2000m ³ 风险应急池 1 座、6000m ³ 风险应急池 1
	事故应急池	置 3 座风险应急池,容积为 2000m³的 1 座,容积为	依托华中表处园	座,预计2020年6月底完工,可容纳本项目事故废
		6000m³的2座		水,依托可行

2.6 原辅材料

2.6.1 项目主要原辅材料消耗情况

本项目使用主要原辅材料见表 2.6-1。

表 2.6-1 主要原辅材料及能耗一览表

序号	名称	规格或成分	単位	年消耗量	材料状态(储存形式)
→、 ;	全自动环形式(72 臂)	挂镀(锌)生产线			
1	金属锌	Zn,纯度>99.99%	t	1	固体
2	除油剂	氢氧化钠 30%、表面活性剂 15% 、无水硫酸钠 30%、碳 酸钠 22%、 螯合剂 1%	t	8	粉剂,袋装
3	工业盐酸	HCl 31%	t	2	液体,桶装
4	片碱	NaOH 99.9%	t	8	固体,袋装
5	锌光亮剂	甲醇 2.5%、亚基丙酮 1%、水 96.5%	t	0.3	液体,桶装
6	三价铬蓝白钝化液	HyPyoBlue: 5: 15%HNO ₃	t	0.6	液体,桶装
7	三价铬黑钝化液	HyPyoBlue: 5: 15%HNO ₃	t	0.6	液体,桶装
二、	全自动环形式(60臂)	挂镀(镍/铬)生产线			
1	除油剂	氢氧化钠 30%、表面活性剂 15%、无水硫酸钠 30% 、碳酸钠 22% 、螯合剂 1%	t	8	粉剂,袋装
2	工业盐酸	HCl 31%	t	2	液体,桶装
3	硫酸镍	含量≥99.0%, 不溶物≤0.005%	t	3.5	固体,袋装
4	硼酸	硼酸 (H3BO3) ≥99.9%,氯化 物≤0.05%	t	0.7	固体,袋装
5	铬酸酐	工业一级,含量>99.5%	t	1	液体,桶装
6	镍光剂	工业一级,含量>99.5%	t	3.5	液体,桶装
7	镍角	含量≥99.0%, 不溶物≤0.005%	t	5	固体,袋装
8	铬走位	2-丙炔-1-醇与甲基环氧乙烷的 化合物 5%、硫酸单酯钠盐 2.5%、水 92.5%	t	0.1	液体,桶装
三、	全自动环形式(80臂)	挂镀(铜镍铬)生产线			
1	硫酸	98%	t	5	液体,桶装
2	除油剂	氢氧化钠 30%、表面活性剂 15% 、无水硫酸钠 30%、碳酸钠 22%、 螯合剂 1%	t	8	粉剂,袋装
3	片碱	NaOH 99.9%	t	2.4	粉剂,袋装
4	氰化钠	NaCN 99.9%	t	1.5	固体,袋装
5	焦铜	含量≥99.0%, 不溶物≤0.005%	t	1	固体,袋装
6	焦钾	含量≥99.0%, 不溶物≤0.005%	t	4	固体,袋装
7	焦铜光剂	甲醇 2.5%、亚基丙酮 1%、水 96.5%	t	0.25	液体,桶装

8	纯铜角	含量≥99.0%, 不溶物≤0.005%	t	3.6	固体,箱装
9	硫酸铜	含量≥99.0%,不溶物≤0.01%	t	3	固体,袋装
10	酸铜光剂		t	3	液体,桶装
11	磷铜角	含量≥99.0%, 不溶物≤0.005%	t	12	固体,箱装
12	硫酸镍	含量≥99.0%, 不溶物≤0.005%	t	3.5	固体,袋装
13	硼酸	硼酸 (H3BO3) ≥99.9%, 氯化 物≤0.05%	t	0.7	固体,袋装
14	铬酸酐	工业一级,含量>99.5%	t	1	液体,桶装
15	镍光剂	工业一级,含量>99.5%	t	3.5	液体,桶装
16	镍角	含量≥99.0%, 不溶物≤0.005%	t	5	固体,袋装
17	铬走位	2-丙炔-1-醇与甲基环氧乙烷的 化合物 5%、硫酸单酯钠盐 2.5%、水 92.5%	t	0.1	液体,桶装
四、	全自动环形式(72臂)	挂镀(镍铬)生产线			
1	除油剂	氢氧化钠 30%、表面活性剂 15%、无水硫酸钠 30%、碳酸钠 22%、螯合剂 1%	t	8	粉剂,袋装
2	工业盐酸	HCl 31%	t	2	液体,桶装
3	硫酸镍	含量≥99.0%, 不溶物≤0.005%	t	3.5	固体,袋装
4	硼酸	硼酸 (H3BO3) ≥99.9%, 氯化 物≤0.05%	t	0.7	固体,袋装
5	铬酸酐	工业一级,含量>99.5%	t	1	液体,桶装
6	镍光剂	工业一级,含量>99.5%	t	3.5	液体,桶装
7	镍角	含量≥99.0%, 不溶物≤0.005%	t	5	固体,袋装
8	铬走位	2-丙炔-1-醇与甲基环氧乙烷的 化合物 5%、硫酸单酯钠盐 2.5%、水 92.5%	t	0.1	液体,桶装

2.6.2 原料与《国家鼓励的有毒有害原料(产品)替代品目录(2016年版)》符合性

工业和信息化部、科学技术部及环境保护部于 2016 年 12 月 14 日联合发布了《国家鼓励的有毒有害原料(产品)替代品目录(2016 年版)》,经查对,该项目原辅材料及主要产品、副产品均不涉及《国家鼓励的有毒有害原料(产品)替代品目录(2016 年版)》中的"被替代品",基本符合该目录相关要求。

2.6.3 项目主要能源消耗情况

项目能耗情况见下表 2.6-2:

序号	名称	单位	用量	来源
1	自来水	m³/年	15000	市政管网
2	纯水	m³/年	10000	车间内纯水制备系统
3	电	万 kwh/年	3	市政电网

表 2.6-2 项目能源消耗一览表

2.6.4 项目物料贮存方式

2.6.4.1 仓库

本项目位于华中表面处理循环经济产业园 301#厂房,仓库设在车间内,用于原料和产品的存储。

2.6.4.2 物料运输

根据货物性质、流向、年运输量,该项目原料、成品运输主要以公路为主,且主要依靠社会运输力量解决。其中危险化学品均由专用运输车辆进行运输,由具有危险化学品准运证的运输企业运输。危险化学品的运输按《危险货物运输包装通用技术条件》(GB12463-2009)进行,做到定车、定人,所定人员须经过危险品运输安全专业培训,通过考核后上岗;所用车辆须经相关部门审核后执证营运。

2.6.5 项目主要化学品理化性质及毒理性质

项目主要化学品理化性质及毒理性质详见表 2.6-5, 其他辅助添加剂主要成分及作用如下:

- (1)除油剂:主要成分是 NaOH 30%、表面活性剂 15%、5 水硅酸钠 30%、碳酸钠 22%、其他 3%,作用是去除工件表面油污,恢复基质表面的洁净度及保持基质表面的完整性。
- (2)络合剂:主要成分是二乙烯三胺 20%、苯甲酸钠 10%、对甲基苯磺酸 5%、水 65%,络合剂与镀液主盐络合,形成更稳定的金属络合离子,增加了浓度极化和电化学极化,使金属沉积速度减慢,镀层更为细致。
- (3) 光亮剂: 主要成分是甲醇 2.5%、亚基丙酮 1%、水 96.5%, 主要作用 是使金属制品镀层均匀、光亮, 提高镀件装饰性。
 - (4) 走位剂: 主要成分是 2-丙炔-1-醇与甲基环氧乙烷的化合物 5%、硫酸

单酯钠盐 2.5%、水 92.5%, 能提高低区光亮度、覆盖度、深度能力。

- (5)缓冲剂:主要成分是乙酸钾 50%、乙酸 1%、水 49%,用来稳定溶液的 PH 值,特别是阴极表面附近的 PH 值。
- (6)加强剂:主要成分是 2-丙炔-1-醇与甲基环氧乙烷的化合物 2.5%、水 97.5%,提高镀层质量。
- (7) 钝化液:镀锌镍钝化液主要成分是氯化铬 40%、草酸钠 14%、水 46%,镀锌钝化液的主要成分是六水合硝酸铬 50%、草酸钠 15%、水 35%。钝化剂是在工件镀层表面形成一层能够阻止金属正常反应的表面状态,能使金属表面呈钝态,提高工件的抗腐蚀能力,以及提高工件外观的美观性。
- (8) 消泡剂: 主要成分是硅酸盐 10%、水 90%, 起到消泡、抑泡的作用, 避免气泡影响产品的防锈性能、清洗性能、极压性能, 保证产品质量。
- (9) 柔软剂:主要成分是异丙基苯磺酸钠 3%、苯甲酸钠盐 7%、氢氯酸 1%、水 89%,主要作用是减少或消除镀层脆性。
- (10) 封闭剂:镀锌镍生产线的封闭剂主要成分是含硅丙烯酸盐 15%、水 85%,镀锌生产的封闭剂主要成分是硅酸锂 3%、水 97%,提高工件防锈能力和耐盐雾能力。

表 2.6-3 主要原辅材料理化性质及危险特性一览表

序	物质名		标识					理化性	质				危	立险特征
· · · · · · · · · · · · · · · · · · ·	称	CAS 号	分子式	分子量	外观 性状	溶解性	相对密度 (水=1)	熔点 (℃)	沸点 (℃)	闪点 (℃)	引燃温度 (℃)	爆炸限 (V%)	危险特性	急性毒性
1	锌板 (锌 99.99%)	7439-89-6	Zn	65.38	银灰色	不溶水。	7.85	/	3000	- - - 无资料	无资料	无资料	遇湿易燃	LD ₅₀ : 无资料; LC ₅₀ : 无资料
2	镍板 (镍 99.99%)	7488-55- 3	Ni	58.7	银白色固体	不溶于水,不 溶于浓硝酸, 溶于稀硝酸。	7.13	1453	2732	无资料	无资料	无资料	不溶于水, 不溶于浓硝 酸,溶于稀 硝酸。	LD ₅₀ : 无资料: LC ₅₀ : 无资料
3	盐酸	7647-01-0	HCl	36.46	无色或微 黄色发烟 液体,的酸 味。	与水混溶,溶 于碱液。	1.20	-114.8 (纯)	108.6 (20%)	无意义	无意义	无意义	不燃,具强 腐蚀性、强 刺激性,可 致	LD ₅₀ : 900mg/kg(兔 经 口): LC ₅₀ : 3124ppm 1 小时 (大鼠吸入)
4	氢氧化钠	1310-73-2	NaOH	40.01	白色不透 明固体, 易潮解。	易溶于水、乙醇、甘油,不溶于丙酮。	2.12	318.4	1390	无资料	249	无资料	具强腐蚀性、强刺激性,可致人体灼伤。	急性毒性: LDso: 无资料; LCso: 无资料 刺激性: 家兔经 眼:1%重度刺激。 家 兔 经 皮: 50mg/24 小时, 重度刺激
5	硝酸	7697-37-2	HNO ₃	63.01	为无色透 明发烟液 体,有酸 味。	与水混溶。	1.20	-42	86	无资料	无资料	无资料	本品助燃, 具强腐蚀性、强刺激性、可致人体灼伤。	LD50: 无资料 LC50: 无资料

序	物质名		标识					理化性	质				危	工险特征
号	称	CAS 号	分子式	分子量	外观 性状	溶解性	相对密度 (水=1)	熔点 (℃)	沸点 (℃)	闪点 (℃)	引燃温度 (℃)	爆炸限 (V%)	危险特性	急性毒性
6	铬酸酐	1333-82-0	CrO ₃	100.01	暗红色或 暗紫色斜 方结晶, 易潮解	溶于水、硫酸、硝酸	2.70	196	分解	无意义	无意义	无意义	强氧化剂, 于易燃物和 可燃物接触 会发生剧烈 反应	LD ₅₀ : 80 mg/kg(大鼠经口)
7	氰化钠	143-33-9	NaCN	49.02	白色或结 晶 状 科 丽,有微 弱的苦杏 仁味	易溶于水、溶 于液氨、微溶 于乙醇、乙醚	1.596	563.7	1496	无意义	无意义	无意义	与硝酸盐、 亚硝酸盐、 氯酸盐反应 剧烈,遇酸 会产生剧毒的氰化氢气	LD ₅₀ : 6.4 mg/kg(大鼠经口)
8	氯化镍	7718-54-9	NiCl ₂	12.60	金黄色粉末。	溶于水	3.55	1001	973	无意义	无意义	无意义	本品不燃, 有毒,具刺 激性。	LD ₅₀ : 186 mg/kg(大 鼠 经 □) : LD ₅₀ : 105mg/kg(大鼠经 □ , for 六结 晶 水);

2.7 主要生产设备

本项目拟建 4 条电镀生产线, 主要生产设备见表 2.7-1。

表 2.7-1 本项目主要设备一览表

序号	设备名称	规格型号	数量	单位	使用工序
1	全自动镀镍/铬线	L24m*W6m	1	条	
2	全自动镀锌线	L26m*W6m	1	条	
3	全自动镀铜/镍/铬线	L20m*W6m	1	条	由 海 工序
4	全自动镀镍铬线	L26m*W6m	1	条	电镀工序
5	烤水炉	L10m*W2m	2	条	
6	镀槽、洗槽等	详见表 2.7-2	133	个	
7	鼓风机	10HP	2	台	
8	冷水机	10HP	2	台	
9	空气能 (加温)	5HP	30	台	
10	超声波发生器	外部发声器,超声频率 可微调,功率 45KW	2	套	
11	减速电机	0.4kw	3	套	
12	调速电机	0.4kw	3	套	
13	整流器	3000A/12V	6	台	
14	整流器	1000A/12V	8	台	
15	整流器	5000A/12V	1	台	电镀辅助设备
16	整流器	2000A/12V	2	台	
17	整流器	4000A/12V	4	台	
18	过滤机	2018/20T	28	台	
19	纯水机	5T/H	1	套	
20	过滤机	10t/h	4	台	
21	废气塔	18.5KW	2	套	
22	废气塔	11KW	1	套	
23	抛光机	2.2KW	6	台	
24	测厚仪	/	1	台	
25	化验仪器	/	1	套	松洞以夕
26	电流钳表	/	1	个	检测设备
27	显微镜	/	1	台	

表 2.7-2 本项目镀槽、洗槽一览表

序号	工序名称	槽体材料	宽	长	高	槽数(个)				
全自动环形式(72臂)挂镀(锌)生产线										
1	超声波除油	SUS304	3500	900	1500	1				
2	回收	PP	700	900	1500	1				
3	水洗	PP	700	900	1500	1				
4	盐酸	PP	700	900	1500	1				

_	11 II								
5	盐酸	PP	700	900	1500	1			
6	盐酸	PP	700	900	1500	1			
7	回收	PP	700	900	1500	1			
8	水洗	PP	700	900	1500	1			
9	水洗	PP	700	900	1500	1			
10	水洗	PP	700	900	1500	1			
11	碱镀锌1	PP	9800	900	1500	1			
12	碱镀锌 2	PP	15000	900	1500	1			
13	回收	PP	700	900	1500	1			
14	水洗	PP	700	900	1500	1			
15	出光	PP	700	900	1500	1			
16	水洗	PP	700	900	1500	1			
17	水洗	PP	700	900	1500	1			
18	钝化	PP	700	900	1500	1			
19	水洗	PP	700	900	1500	1			
20	水洗	PP	700	900	1500	1			
21	水洗	PP	700	900	1500	1			
22	水洗	PP	700	900	1500	1			
23	钝化	PP	1400	900	1500	1			
24	水洗	PP	700	900	1500	1			
25	水洗	PP	700	900	1500	1			
26	水洗	PP	700	900	1500	1			
27	烘烤	SUS304	5600	900	1500	1			
27									
1	超声波除油	SUS304	2400	900	1500	1			
2	回收	PP	600	900	1500	1			
3	水洗	PP	600	900	1500	1			
4	酸洗	PP	1800	900	1500	1			
5	回收	PP	600	900	1500	1			
6	水洗	PP	600	900	1500	1			
7	水洗	PP	600	900	1500	1			
8	电解除油	PP	1200	900	1500	1			
9	水洗	PP	600	900	1500	1			
10	水洗	PP	600	900	1500	1			
11	活化	PP	600	900	1500	1			
12	水洗	PP	600	900	1500	1			
13	半光镍	PP	9000	900	1500	1			
14	全光镍	PP	7200	900	1500	1			
15	镍封	PP	1200	900	1500	1			
16	回收	PP	600	900	1500	1			
17	水洗	PP	600	900	1500	1			
18	水洗	PP	600	900	1500	1			
19	水洗	PP	600	900	1500	1			
20	镀铬	PVC	3000	900	1500	1			
21	回收	PP	700	900	1500	1			
22	水洗	PP	700	900	1500	1			
23	水洗	PP	700	900	1500	1			
24	水洗	PP	700	900	1500	1			
25	烘烤	SUS304	6000	800	1500	1			
	İ	全自动环形式(80臂)挂镀((铜镍铬) 生产	线				
1	硫酸	PVC	450	900	1200	1			
2	回收	PP	450	900	1200	1			
3	水洗	PP	450	900	1200	1			
4	水洗	PP	450	900	1200	1			

	T/ \A					
5	除油	PP	450	900	1200	1
6	水洗	PP	450	900	1200	1
7	水洗	PP	450	900	1200	1
8	活化	PP	450	900	1200	1
9	水洗	PP	450	900	1200	1
10	水洗	PP	450	900	1200	1
11	碱铜	PP	3150	900	1200	1
12	回收	PP	450	900	1200	1
13	回收	PP	450	900	1200	1
14	水洗	PP	450	900	1200	1
15	水洗	PP	450	900	1200	1
16	活化	PP	450	900	1200	1
17	水洗	PP	450	900	1200	1
18	水洗	PP	450	900	1200	1
19	回收	PP	450	900	1200	1
20	回收	PP	450	900	1200	1
21	水洗	PP	450	900	1200	1
22	水洗	PP	450	900	1200	1
23	活化	PP	450	900	1200	1
24	水洗	PP	450	900	1200	1
25	水洗	PP	450	900	1200	1
26	酸铜	PP	6300	900	1200	1
27	酸铜	PP	4500	900	1200	1
28	回收	PP		900		
29	回收		450	900	1200	1
30	水洗	PP PP	450	900	1200	1
31	水洗水洗		450	900	1200	1
32	活化	PP	450		1200	1
	水洗	PP	450	900	1200	1
33		PP	450	900	1200	1
	水洗 半光镍	PP	450	900	1200	1
35		PP	4500	900	1200	1
36	全光镍 哑镍	PP	2700	900	1200	1
37		PP	1200	900	1200	1
38	回收	PP	450	900	1200	1
39	回收	PP	450	900	1200	1
40	水洗	PP	450	900	1200	1
41	水洗	PP	450	900	1200	1
42	镀铬	PVC	900	900	1200	1
43	回收	PP	450	900	1200	1
44	回收	PP	450	900	1200	1
45	水洗	PP	450	900	1200	1
46	水洗	PP	450	900	1200	1
47	水洗	PP	450	900	1200	1
48	烘烤	SUS304	6000	800	1200	1
<u> </u>	ATT TANKER ST	全自动环形式		(镍铬)生产组		
1	超声波除油	SUS304	2400	900	1500	1
2	回收	PP	600	900	1500	1
3	水洗	PP	600	900	1500	1
4	水洗	PP	600	900	1500	1
5	酸洗	PP	1800	900	1500	1
6	回收	PP	600	900	1500	1
7	回收	PP	600	900	1500	1
8	水洗	PP	600	900	1500	1
9	水洗	PP	600	900	1500	1

10	电解除油	PP	1200	900	1500	1
11	回收	PP	600	900	1500	1
12	水洗	PP	600	900	1500	1
13	水洗	PP	600	900	1500	1
14	活化	PP	600	900	1500	1
15	水洗	PP	600	900	1500	1
16	水洗	PP	600	900	1500	1
17	半光镍	PP	9600	900	1500	1
18	全光镍	PP	6600	900	1500	1
19	镍封	PP	600	900	1500	1
20	回收	PP	600	900	1500	1
21	回收	PP	600	900	1500	1
22	水洗	PP	600	900	1500	1
23	水洗	PP	600	900	1500	1
24	水洗	PP	600	900	1500	1
25	镀铬	PVC	4000	900	1500	1
26	回收	PVC	600	900	1500	1
27	回收	PVC	600	900	1500	1
28	水洗	PP	600	900	1500	1
29	水洗	PP	600	900	1500	1
30	水洗	PP	600	900	1500	1
31	水洗	PP	600	900	1500	1
32	热水	PP	600	900	1500	1
33	烘烤	SUS304	3000	900	1500	1

2.8 车间平面布置

拟建项目位于华中表面处理循环经济产业园内 301#厂房 4 楼,长 120m、宽 24m,厂房内设置 4 条电镀生产线、办公室、实验室、化验室、原辅料仓库、成品仓库等。废气排气筒位于厂房一侧,原辅料仓库地面采取 PP 塑料托防腐防渗。

本项目采用全自动电镀生产线,各镀槽尺寸及结构设计满足自动化水平要求,满足逆流清洗,节约水资源的要求。本项目位于华中表处园内,厂房周围均为电镀企业。厂房 200m 范围内无居住等环境敏感点。

因此本项目车间平面布置基本合理。

2.9 公用工程

2.9.1 给水

项目生产、生活、消防用水由华中表处园供水系统提供,其水质、水量、水压均可满足项目生产、生活及消防用水的要求。企业单独设纯水制备系统,用于产品清洗等工序。

2.9.2 排水

本项目排水依托华中表处园内的排水工程。企业自建由车间到各类废水收 集罐的管网,废水分类收集进入电镀废水深度处理车间处理。

2.9.3 供热

本项目供热依托华中表处园的供热管网,前期蒸汽来源于国电长源热电厂蒸汽,待华中表处园内天然气锅炉建成运行后,蒸汽来源于华中表处园。车间内设置换热系统。

2.9.4 制冷

本项目设置 2 台 10HP 冷水机制备冷冻水,采用风冷制冷,冷冻水制备工艺为:制冷剂在压缩机的作用下把纯水的温度降低至十度以下,然后同过板式交换过镀槽的工作液的温度控制在电镀工艺范围内。

2.9.5 供电

本项目供电依托华中表处园供电系统,供电能够得到保障。

2.10 工作时间与劳动定员

本项目主要生产装置采用连续操作,年工作日 300 天,每班 10 小时,轮班工作制度,年操作 7200 小时,全厂定员 50 人。

2.11 建设周期

本项目从初步设计至安装工程完成,建设工期6个月,预计2021年2月投产。

2.12 主要经济技术指标

拟建项目主要经济技术指标见下表:

序号 项目 单位 指标 备注 工程总投资 1 万元 2000 2 环保投资 万元 166 电镀生产线 条 4 3 劳动定员 50 4 人 5 年工作日 天 300 24h/d 总用水量 25000 含自来水、纯水 6 m^3/a 7 耗电量 万 kwh/a 3

表 2.12-1 拟建项目主要经济技术指标

3 建设项目工程分析

3.1 生产工艺基本原理

3.1.1 前处理

(1) 化学除油:

在表面处理前必须首先将工件表面所附着的油脂、污垢和氧化物等彻底除去。镀件进行化学除油,使用除油剂,主要含 NaOH、表面活性剂、Na₂CO₃等,温度 60℃~70℃,采用蒸汽间接加热,通过喷淋水洗槽补水。槽液平时经化学除油管理副槽过滤、隔油等线外自动处理后循环使用,平时添加除油剂。前处理过程中会产生碱性废气、废油渣和碱性废液。

(2) 超声波除油:

超声波除油是指在除油槽液中,设置超声波发生器震源,利用超声波产生的"空化"效应,强化除油过程。当超声波作用于液体时,反复交替地产生瞬间负压力和瞬间正压力。在产生负压的半周期内,液体中产生真空空穴。溶解于溶液中的气体进入空穴,形成气泡。接着在正压力的半周期,气泡被压缩而破裂,瞬间产生强大的压力(高达上千个大气压)。另一方面,超声波在密度不同的异相界面处,会产生显著的反射作用,由于这个反射音压,使界面上溶液激烈地发生搅动,形成强大的冲刷制件表面油污的冲击力。从而实现强化除油过程。槽液经过过滤隔油之后循环使用,定期添加除油剂。除油过程中会产生碱性废气、废油渣,定期排放的废槽液。

(3) 电解除油:

镀件接在电源阳极上,以锌板(或镍板)为第二电极,在直流电的作用下将零件表面的油污去除,在电解条件下,电极的极化作用降低了油与溶液的界面张力,溶液对零件的表面的湿润性增加;使油膜与金属间的黏附力降低,使油污易于剥离并分散到溶液中乳化而除去。电解除油主要依靠电解作用强化除油效果,通常比化学除油更有效,速度更快、除油更彻底。使用的电解除油剂主要含 NaOH、表面活性剂、Na₂CO₃等,温度 50℃~60℃,采用蒸汽间接加热。槽液平时经电解除油管理副槽过滤、隔油等

线外自动处理后循环使用,添加除油剂。每半年处理槽液 1 次,产生碱雾、废油渣和碱性废液。

(4) 酸洗:

使用约 30%左右的盐酸,按照体积占比 40-60%与水混合,进行两级酸洗,每次时间约 1~2min,温度为常温。每 2 周更换槽液 1 次,产生盐酸雾和浓酸废液。

(5) 回收:

对化学除油、超声除油、电解除油后的工件采用少量水进行清洗,除油后的回收废水半个月排放一次,产生的高浓度有机废水,排放至华中表处园高浓度废水收集罐。

(6) 水洗:

除油后采用二级逆流漂洗或者顶喷水洗,首先一级水洗槽洗涤后产生的废水,排放至华中表处园废水处理单元进行处理,顶喷水洗和第二级采用清水清洗,清洗后的水溢流进入到一级水洗槽中进行补充,不外排。

(7) 活化:

本项目采用的是酸性活化,用盐酸去除工件上的碱性附着液,增加酸性电镀活性。 槽液平时经酸洗活化管理副槽沉降、分离等线外自动处理后循环使用,不外排。

3.1.2 表面处理

(1) 镀碱锌

镀锌层是保护钢铁基体免受大气腐蚀的最常用镀层。锌镀层经铬酸盐钝化之后,可以大大提其耐蚀性,所以镀锌后钝化是镀锌工艺中的一道必须工序。目前,国内镀锌量约占整个电镀量的 50%左右。国内镀锌工艺主要以无氰镀锌为主,无氰镀锌工艺大体可分为锌酸盐镀锌、氯化盐镀锌、硫酸盐镀锌和铵盐镀锌等种类。

本工程采用的是镀碱锌,在盛有镀锌液的镀槽中,经过清理和特殊预处理的待镀件作为阴极,用镀覆金属制成阳极,两极分别与直流电源的正极和负极联接。镀锌液由含有镀覆金属的化合物、导电的盐类、缓冲剂、pH 调节剂和添加剂等的水溶液组成。通电后,镀锌液中的金属离子,在电位差的作用下移动到阴极上形成镀层。阳极的金属形成金属离子进入镀锌液,以保持被镀覆的金属离子的浓度。镀锌时,阳极材料的质量、镀锌液的成分、温度、电流密度、通电时间、搅拌强度、析出的杂质、电源波形等都会影响镀层的质量,需要适时进行控制。

(2) 化学镀镍:

化学镀又称为无电解镀,在一定条件下,水溶液中的金属离子被还原剂还原,并且沉淀到固态基体表面上的过程。镀液一般以硫酸镍、乙酸镍等为主盐,次亚磷酸盐、硼氢化钠、硼烷、肼等为还原剂,再添加各种助剂。在 90℃的酸性溶液或接近常温的中性溶液、碱性溶液中进行作业。在催化剂 Fe 的催化作用下,溶液中的次磷酸根在催化表面催化脱氢,形成活性氢化物,并被氧化成亚磷酸根;活性氢化物与溶液中的镍离子进行还原反应而沉积镍。

(3) 镀铬:

在盛有电镀液的镀槽中,经过清理和特殊预处理的待镀件作为阴极,用镀覆金属制成阳极,两极分别与直流电源的负极和正极联接。电镀液由含有镀覆金属的化合物、导电的盐类、缓冲剂、pH 调节剂和添加剂等的水溶液组成。通电后,电镀液中的金属离子,在电位差的作用下移动到阴极上形成镀层。在镀铬过程中,阳极只起传递电子、导通电流的作用。电解液中的铬离子浓度,需依靠定期地向镀液中加入铬化合物来维持。

(4) 预镀铜:

在盛有电镀液的镀槽中,经过除油和酸洗后的工件作为阴极,在阳极为铜板的电镀槽中镀铜。槽液中主要含 Cu^{2+} 30~40g/L、CN40~50g/L,温度 40~55 $^{\circ}$ C。

硫酸铜镀液主要有硫酸铜、硫酸和水,甚至也有其它添加剂。硫酸铜是铜离子(Cu²+)的来源,当溶解于水中会离解出铜离子,铜离子会在阴极(工件)还原(得到电子)沉积成金属铜。

(5) 三价铬钝化:

水溶液中 Cr³+通常以[Cr (H₂O)₆]³+存在,水的络合能力很弱,在发生钝化反应时,体系不稳定,因此需要一些相对较强的络合剂。这与电镀添加剂的本质基本相同。加入络合剂后,铬离子以以下结构式存在:

[Cr (H_2O) XF] ${}^{(3-X)^{+}}$ (0 \leq X \leq 3) 或[Cr (H_2O) ${}_{6}$ 2X (C_2O_4)] ${}^{(3-2X)^{+}}$ (0 \leq X \leq 1.5) 金属锌在氧化剂双氧水的作用下溶解为锌离子。

$$Zn+2H \rightarrow Zn^{2+}+H_2 \uparrow$$

由于 H+的消耗, 使金属的表面 pH 升高, 随着 pH 升高, 络合离子稳定降低, 解

离出的氢氧根离子进攻络合离子,使铬离子及溶液中的锌离子形成 Cr(OH)₃和 Zn(OH)₂,与此同时草酸根的浓度不断上升,与 Co2+形成了难溶的草酸盐,上述产物组成了钝化膜,在搅拌条件下,上述反应重复进行使得钝化膜增厚,从而提高镀件的耐蚀性。

3.1.3 后处理

烘烤:

采用 60℃左右的热风对封闭后的工件进行烘烤,在此过程中会有烘干废气产生,主要成分为挥发性有机物(以 VOCs 计)。

3.1.4 槽液净化

镀槽槽液均采用过滤器净化,无倒槽过程。槽液采用 24h 循环过滤,每天清洗过滤设备的滤芯一次,保持槽液清洁。清洗过滤滤芯有少量清洗废水,进入混排废水。

当镀锌、锌镍槽镀液需要进行净化时,将活性炭粉或锌粉加入过滤机,活性炭粉或锌粉由滤网截留,通过过滤机的连续过滤,使镀液通过滤网与截留在滤网上的活性炭粉及锌粉充分接触,达到净化镀液的效果。

3.2 生产工艺流程与产污节点分析

3.2.1 全自动环形式(72臂)挂镀(锌)生产线工艺流程

上件:镀锌电镀生产线为全自动电镀线,手工将待镀工件上挂到电镀线上,通过中控系统控制依次进入各生产工位。

超声波除油:槽液含 30-50g/L 除油剂,槽液温度为 50~70℃。加热方式为电热管加热,温控器控制温度范围。将工件表面粘附的油类物质清洗,在除油槽液中,设置超声波发生器震源,利用超声波产生的"空化"效应,强化除油过程。

回收:对超声除油后的工件采用少量水进行清洗,除油后的回收废水半个月排放 一次,产生的高浓度有机废水,排放至华中表处园高浓度废水收集罐。

水洗:除油后采用二级逆流漂洗或者顶喷水洗,流水清洗工件表面的残留物。

酸洗、回收、水洗:用含有 30%的 HCI 酸洗工件表面的氧化物,确保工件表面无锈迹。上述每一步后都设有水洗槽,用流水清洗。先采用少量水进行清洗,废水回收,再水洗,流水为净化处理后的回用水或是新鲜自来水,清洗掉工件表面的残留物。

碱性镀锌、回收、水洗: 阳极为锌板,碱性镀锌槽内槽液成分为锌离子(8-12g/L)、 光亮剂(0.5-2.0ml/L),镀液采用 NaOH,镀件在 pH14 以上,电流密度 5A/dm2,槽液 连续过滤,槽液 2 个月进行一次深度过滤。镀锌完成后,再二级逆流常温水洗。

出光、水洗: 采用约 1%~3%盐酸在室温下进行出光。时间 1~2min,再用流水清洗工件表面的残留物。

- 一次钝化、水洗: 钝化槽内槽液为三价铬蓝白钝化液, 钝化液成分为 HyPyoBlue: 5: 15%HNO3, 槽液排放频次为(槽液 1-3 个月排空 1 次)。初次配缸完成后槽液循环使用, 定期检测和补充槽液。钝化完成后, 二级逆流水洗。
- 二次钝化、水洗: 钝化槽内槽液为三价铬黑钝化液, 钝化液成分为 HyPyoBlue: 5: 15%HNO3, 槽液排放频次为(槽液 1-3 个月排空 1 次)。初次配缸完成后槽液循环使用, 定期检测和补充槽液。钝化完成后, 二级逆流水洗。

烘烤:用经过除油除尘除水 $0.3\sim0.4$ MPa 的压缩空气吹干工件表面,如工件有盲孔,要吹干盲孔中的水分,再在 40° \sim 60° \sim 8件下烘烤工件。

下挂位: 镀锌电镀生产线为全自动电镀线,通过中控系统控制依次下挂位。

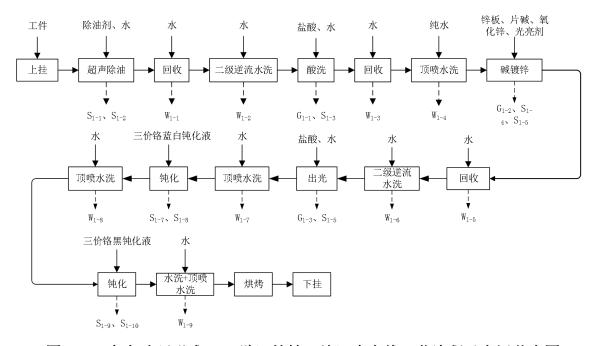


图 3.2-1 全自动环形式(72 臂)挂镀(锌)生产线工艺流程及产污节点图

3.2.2 全自动环形式(60臂) 挂镀(镍铬) 生产线工艺流程

上件:镀锌电镀生产线为全自动电镀线,手工将待镀工件上挂到电镀线上,通过中控系统控制依次进入各生产工位。

超声波除油:槽液含 30-50g/L 除油剂,槽液温度为 50~70℃。加热方式为电热管加热,温控器控制温度范围。将工件表面粘附的油类物质清洗,在除油槽液中,设置超声波发生器震源,利用超声波产生的"空化"效应,强化除油过程。

回收:对超声除油后的工件采用少量水进行清洗,除油后的回收废水半个月排放 一次,产生的高浓度有机废水,排放至华中表处园高浓度废水收集罐。

水洗:除油后采用二级逆流漂洗或者顶喷水洗,流水清洗工件表面的残留物。

酸洗、回收、水洗:用含有 30%的 HCI 酸洗工件表面的氧化物,确保工件表面无锈迹。上述每一步后都设有水洗槽,用流水清洗。流水为净化处理后的回用水或是新鲜自来水,清洗掉工件表面的残留物。

电解除油、水洗:镀件接在电源阳极上,以镍板为第二电极,在直流电的作用下将零件表面的油污去除。槽液含 40-60g/L 除油剂,使工件浸泡在槽液中。槽液排空频次(槽液 1-3 个月排空 1 次)。除油后采用二级逆流漂洗或者顶喷水洗,流水清洗工件表面的残留物。

活化、水洗:本项目采用的是酸性活化,用盐酸去除工件上的碱性附着液,增加酸性电镀活性。槽液平时经酸洗活化管理副槽沉降、分离等线外自动处理后循环使用,不外排。活化后用流水清洗工件表面的残留物。

半光镍、全光镍:槽液为硫酸镍、硼酸。温度为 50~70℃,半光镍阶段停留时间 10~18min,全光镍阶段停留时间 8~10min。

镍封、回收、水洗:槽液为硫酸镍、硼酸。温度为 50~70℃,停留时间为 2~4min。 镍封后的工件采用少量水进行清洗,然后再用流水清洗工件表面的残留物。

镀铬、回收、水洗:槽液为铬酸酐,镀件作为阴极,用镀覆金属制成阳极,两极分别与直流电源的负极和正极联接。通电后,电镀液中的金属离子,在电位差的作用下移动到阴极上形成镀层。在镀铬过程中,阳极只起传递电子、导通电流的作用。电解液中的铬离子浓度,需依靠定期地向镀液中加入铬化合物来维持。镀铬后的工件采用少量水进行清洗,然后再用流水清洗工件表面的残留物。

烘烤:用经过除油除尘除水 $0.3\sim0.4$ MPa 的压缩空气吹干工件表面,如工件有盲孔,要吹干盲孔中的水分,再在 $40\,\mathrm{C}\sim60\,\mathrm{C}$ 条件下烘烤工件。

下挂位:镀锌电镀生产线为全自动电镀线,通过中控系统控制依次下挂位。

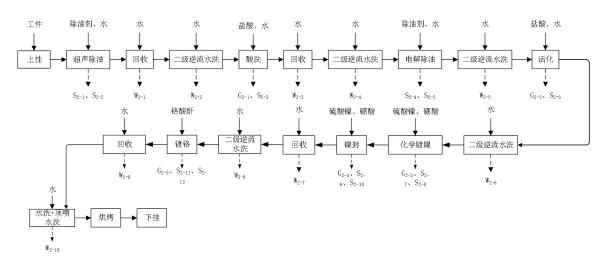


图 3.2-2 全自动环形式(60 臂) 挂镀(镍铬) 生产线工艺流程及产污节点图

3.2.3 全自动环形式(80 臂) 挂镀(铜镍铬) 生产线工艺流程

上件:镀锌电镀生产线为全自动电镀线,手工将待镀工件上挂到电镀线上,通过中控系统控制依次进入各生产工位。

硫酸、回收、水洗:用硫酸酸洗工件表面的氧化物,确保工件表面无锈迹。酸洗后用少量水进行清洗,然后再用流水清洗,流水为净化处理后的回用水或是新鲜自来水,清洗掉工件表面的残留物。

化学除油、水洗: 槽液含 30-50g/L 除油剂,浸泡在槽液中。槽液排空频次(槽液 1-3 个月排空 1 次)。槽液平时经化学除油管理副槽过滤、隔油等线外自动处理后循环使用,平时添加除油剂。除油后采用二级逆流漂洗或者顶喷水洗,流水清洗工件表面的残留物。

活化、水洗:本项目采用的是酸性活化,用盐酸去除工件上的碱性附着液,增加酸性电镀活性。槽液平时经酸洗活化管理副槽沉降、分离等线外自动处理后循环使用,不外排。活化后用流水清洗工件表面的残留物。

碱铜、回收、水洗: 阳极为铜板, 阴极为工件, 槽液主要成分为 NaOH、氰化钠,

在槽液中停留 7~14min,完成后先用少量水清洗,然后再用流水清洗工件表面的残留物。

活化、水洗:本项目采用的是酸性活化,用盐酸去除工件上的碱性附着液,增加酸性电镀活性。槽液平时经酸洗活化管理副槽沉降、分离等线外自动处理后循环使用,不外排。活化后用流水清洗工件表面的残留物。

焦铜、回收、水洗:阳极为铜板,阴极为工件,槽液主要成分为焦铜、焦钾,在槽液中停留 6~12min,完成后先用少量水清洗,然后再用流水清洗工件表面的残留物。

活化、水洗:本项目采用的是酸性活化,用盐酸去除工件上的碱性附着液,增加酸性电镀活性。槽液平时经酸洗活化管理副槽沉降、分离等线外自动处理后循环使用,不外排。活化后用流水清洗工件表面的残留物。

酸铜、回收、水洗: 阳极为铜板,阴极为工件,槽液主要成分为硫酸铜、硫酸,在槽液中停留 14~30min, 完成后先用少量水清洗, 然后再用流水清洗工件表面的残留物。

活化、水洗:本项目采用的是酸性活化,用盐酸去除工件上的碱性附着液,增加酸性电镀活性。槽液平时经酸洗活化管理副槽沉降、分离等线外自动处理后循环使用,不外排。活化后用流水清洗工件表面的残留物。

半光镍、全光镍:槽液为硫酸镍、硼酸。温度为 50~70℃,半光镍阶段停留时间 10~18min,全光镍阶段停留时间 8~10min。

哑镍、回收、水洗:槽液为硫酸镍、硼酸。温度为 50~70℃,停留时间为 2~4min。 镍封后的工件采用少量水进行清洗,然后再用流水清洗工件表面的残留物。

镀铬、回收、水洗:槽液为铬酸酐,镀件作为阴极,用镀覆金属制成阳极,两极分别与直流电源的负极和正极联接。通电后,电镀液中的金属离子,在电位差的作用下移动到阴极上形成镀层。在镀铬过程中,阳极只起传递电子、导通电流的作用。电解液中的铬离子浓度,需依靠定期地向镀液中加入铬化合物来维持。镀铬后的工件采用少量水进行清洗,然后再用流水清洗工件表面的残留物。

烘烤:用经过除油除尘除水 $0.3\sim0.4$ MPa 的压缩空气吹干工件表面,如工件有盲孔,要吹干盲孔中的水分,再在 40° \sim 60° \sim 8件下烘烤工件。

下挂位:镀锌电镀生产线为全自动电镀线,通过中控系统控制依次下挂位。

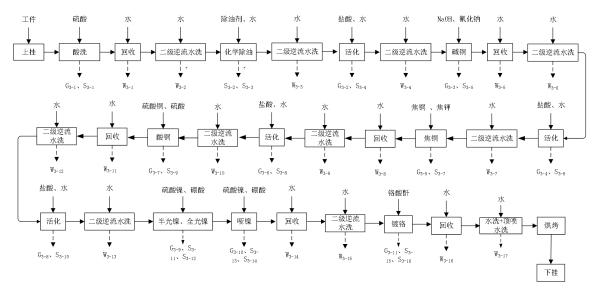


图 3.2-3 全自动环形式(80 臂) 挂镀(铜镍铬) 生产线工艺流程及产污节点图

3.2.4 全自动环形式(72臂) 挂镀(镍) 生产线工艺流程

上件:镀锌电镀生产线为全自动电镀线,手工将待镀工件上挂到电镀线上,通过中控系统控制依次进入各生产工位。

超声波除油:槽液含 30-50g/L 除油剂,槽液温度为 50~70℃。加热方式为电热管加热,温控器控制温度范围。将工件表面粘附的油类物质清洗,在除油槽液中,设置超声波发生器震源,利用超声波产生的"空化"效应,强化除油过程。

回收:对超声除油后的工件采用少量水进行清洗,除油后的回收废水半个月排放 一次,产生的高浓度有机废水,排放至华中表处园高浓度废水收集罐。

水洗:除油后采用二级逆流漂洗或者顶喷水洗,流水清洗工件表面的残留物。

酸洗、回收、水洗:用含有 30%的 HCI 酸洗工件表面的氧化物,确保工件表面无锈迹。上述每一步后都设有水洗槽,用流水清洗。流水为净化处理后的回用水或是新鲜自来水,清洗掉工件表面的残留物。

电解除油、回收、水洗:镀件接在电源阳极上,以镍板为第二电极,在直流电的作用下将零件表面的油污去除。槽液含 40-60g/L 除油剂,使工件浸泡在槽液中。槽液排空频次(槽液 1-3 个月排空 1 次)。除油后先用少量水进行清洗,再采用二级逆流漂洗或者顶喷水洗,流水清洗工件表面的残留物。

活化、水洗: 本项目采用的是酸性活化,用盐酸去除工件上的碱性附着液,增加

酸性电镀活性。槽液平时经酸洗活化管理副槽沉降、分离等线外自动处理后循环使用,不外排。活化后用流水清洗工件表面的残留物。

半光镍、全光镍:槽液为硫酸镍、硼酸。温度为 50~70℃,半光镍阶段停留时间 10~18min,全光镍阶段停留时间 8~10min。

镍封、回收、水洗:槽液为硫酸镍、硼酸。温度为 50~70℃,停留时间为 2~4min。 镍封后的工件采用少量水进行清洗,然后再用流水清洗工件表面的残留物。

镀铬、回收、水洗:槽液为铬酸酐,镀件作为阴极,用镀覆金属制成阳极,两极分别与直流电源的负极和正极联接。通电后,电镀液中的金属离子,在电位差的作用下移动到阴极上形成镀层。在镀铬过程中,阳极只起传递电子、导通电流的作用。电解液中的铬离子浓度,需依靠定期地向镀液中加入铬化合物来维持。镀铬后的工件采用少量水进行清洗,然后再用流水清洗工件表面的残留物。

热水洗: 用热水清洗工件, 温度为 50~70℃, 停留时间 1~2min。

烘烤:用经过除油除尘除水 $0.3\sim0.4$ MPa 的压缩空气吹干工件表面,如工件有盲孔,要吹干盲孔中的水分,再在 $40\,\mathrm{C}\sim60\,\mathrm{C}$ 条件下烘烤工件。

下挂位: 镀锌电镀生产线为全自动电镀线,通过中控系统控制依次下挂位。

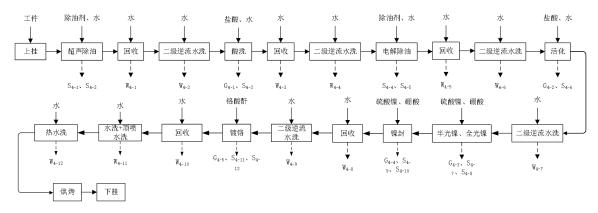


图 3.2-4 全自动环形式(72 臂) 挂镀(镍) 生产线工艺流程及产污节点图

表 3.2-1 生产工艺参数及三废产生情况一览表

生产线	工序	槽液参数及工艺说明	温度	时间			污染物	物产生情	 青况	
工/ 汉	/ J'	但似多数及工石机划	(℃)	(min)	废水		废	气	固废	
	上挂	人工将镀件挂在可移动的挂具上	常温	5						
	超声波除	槽液含 30-50g/L 除油剂,浸泡在槽液中。 槽液排空频次(槽液 1-3 个月排空 1 次)	50-70	5-10					S ₁₋₁	含油槽渣
	油								S ₁₋₂	前处理废液
	回收	用水清洗镀件,槽液半个月排放一次	常温	1-2	W ₁₋₁	前处理 高浓废 水				
全自动 环形式	水洗	二级逆流漂洗	常温	1-2	W ₁₋₂	前处理 废水				
(72 臂)挂	酸洗	槽液含 50-100mg/L 盐酸,浸泡在槽液中。 槽液排空频次(槽液 1-3 个月排空 1 次)	常温	(1-2) *3			G ₁₋₁	氯化 氢	S ₁₋₃	酸性废液
镀(锌)	回收	用水清洗镀件,槽液半个月排放一次	常温	1-2	W ₁₋₃	酸性高 浓废水				
	水洗	顶喷水洗	常温	(1-2) *3	W ₁₋₄	综合废 水				
	碱镀	阳极为锌板,碱性镀锌槽内槽液成分为锌 离子(8-12g/L)、光亮剂(0.5-2.0ml/L), 镀液采用 NaOH,镀件在 pH14 以上,电	常温	14-20/			G ₁₋₂	氢氧	S ₁₋₄	过滤废渣
	锌	流密度 5A/dm², 槽液连续过滤, 槽液 2 个 月进行一次深度过滤。	113 11111	14-30			G ₁₋₂	化钠	S ₁₋₅	碱锌废液
	回收	用水清洗镀件,槽液半个月排放一次	常温	1-2	W ₁₋₅	综合高 浓废水				
	水洗	二级逆流漂洗	常温	1-2	W ₁₋₆	前处理 废水				
	出光	约 1%~3%盐酸	常温	1-2			G ₁₋₃	硝酸 雾	S ₁₋₆	盐酸废液

	水洗	顶喷水洗	常温	(1-2) *2	W ₁₋₇	综合高 浓废水				-
	钝化	采用三价铬蓝白钝化液,钝化液成分为 HyPyoBlue: 5: 15%HNO3, 槽液排放频	常温	1-2					S ₁₋₇	过滤废渣
	7676	次为(槽液 1-3 个月排空 1 次)	112 #	1 2					S ₁₋₈	钝化废液
	水洗	顶喷水洗	常温	(1-2) *4	W ₁₋₈	含铬废 水				
	钝化	采用三价铬黑钝化液,钝化液成分为 HyPyoBlue: 5: 15%HNO3, 槽液排放频	常温	1-2					S ₁₋₉	过滤废渣
		次为(槽液 1-3 个月排空 1 次)							S ₁₋₁₀	钝化废液
	水洗	水洗/顶喷水洗	常温	(1-2) *3	W ₁₋₉	含铬废 水				
	烘烤	吹干工件表面,再烘烤工件	40-60	8-10						
	下挂		常温							
	上挂	人工将镀件挂在可移动的挂具上	常温	5						
	超声波除	槽液含 30-50g/L 除油剂,浸泡在槽液中。	50-70	5-10					S ₂₋₁	含油槽渣
	油	槽液排空频次(槽液 1-3 个月排空 1 次)	30-70	3-10					S ₂₋₂	前处理废液
	回收	用水清洗镀件,槽液半个月排放一次	常温	1-2	W ₂₋₁	前处理 高浓废 水				
全自动环形式	水洗	二级逆流水洗	常温	1-2	W ₂₋₂	前处理 废水				
(60臂) 挂镀	酸洗	槽液含 50-100mg/L 盐酸,浸泡在槽液中。 槽液排空频次(槽液1个月排空1次)	常温	3-6			G ₂₋₁	氯化 氢	S ₂₋₃	酸性废液
(镍 铬)生 产线	回收	用水清洗镀件,槽液半个月排放一次	常温	1-2	W ₂₋₃	酸性高 浓废水				
厂线	水洗	二级逆流水洗	常温	(1-2) *2	W ₂₋₄	综合废 水				

电解	镀件接在电源阳极上,以镍板为第二电极,槽液含 40-60g/L 除油剂,浸泡在槽液	50.70	2.4					S ₂₋₄	含油槽渣
除油	中。槽液排空频次(槽液 1-3 个月排空 1 次)	50-70	2-4					S ₂₋₅	前处理废液
水洗	二级逆流水洗	常温	(1-2) *2	W ₂₋₅	前处理 废水				
活化	酸性活化,用盐酸去除工件上的碱性附着 液	常温	1-2			G ₂₋₂	氯化 氢	S ₂₋₆	酸性废液
水洗	二级逆流水洗	常温	1-2	W ₂₋₆	综合废 水				
化学	槽液为硫酸镍、硼酸	50-70	10-18/8-10			G ₂₋₃	硫酸	S ₂₋₇	过滤废渣
镀镍	THE TIX / J PULLEX LAN V PULLEX	30-70	10-10/0-10			02-3	雾	S ₂₋₈	含镍废液
镍封	槽液为硫酸镍、硼酸	50-70	2-4			G ₂₋₄	硫酸	S ₂₋₉	过滤废渣
NY 1-1	TETIC/J BULEX DEV BUILEX	30 70	2 1			02-4	雾	S ₂₋₁₀	含镍废液
回收	用水清洗镀件,槽液半个月排放一次	常温	1-2	W ₂₋₇	重金属 高浓废				
水洗	二级逆流水洗/顶喷水洗	常温	(1-2) *3	W ₂₋₈	含镍废水				
<i>⊦\\\</i> : <i>⊦\</i> :	 槽液为铬酸酐,镀件作为阴极,用镀覆金	10.25					铬酸	S ₂₋₁₁	过滤废渣
镀铬	属制成阳极	18-25	5-10			G_{2-5}	雾	S ₂₋₁₂	含铬废液
回收	用水清洗镀件,槽液半个月排放一次	常温	1-2	W ₂₋₉	含铬高 浓废水				
水洗	二级逆流水洗/顶喷水洗	常温	(1-2) *3	W ₂₋₁₀	含铬废 水				
烘烤	吹干工件表面,再烘烤工件	40-60	8-10						
下挂		常温							
上挂	人工将镀件挂在可移动的挂具上	常温	5						

	酸洗	用硫酸酸洗工件表面的氧化物	常温	1-2			G ₃₋₁	硫酸 雾	S ₃₋₁	酸性废液
	回收	用水清洗镀件,槽液半个月排放一次	常温	1-2	W ₃₋₁	酸性高 浓废水				
	水洗	二级逆流水洗	常温	(1-2)*2	W ₃₋₂	综合废 水				
全自动	除油	槽液含 30-50g/L 除油剂,浸泡在槽液中。 槽液排空频次(槽液 1-3 个月排空 1 次)	常温	1-2					S ₃₋₂ S ₃₋₃	含油槽渣 前处理废液
环形式 (80臂)	水洗	二级逆流水洗	常温	(1-2)*2	W ₃₋₃	前处理 废水				
挂 镀 (铜镍	活化	酸性活化,用盐酸去除工件上的碱性附着 液	常温	1-2			G ₃₋₂	氯化 氢	S ₃₋₄	酸性废液
铬)生 产线	水洗	二级逆流水洗	常温	(1-2)*2	W ₃₋₄	综合废 水				
	碱铜	阳极为铜板,阴极为工件,槽液主要成分 为 NaOH、氰化钠	常温	7-14			G ₃₋₃	氰化 氢	S ₃₋₅	含氰废液
	回收	用水清洗镀件,槽液半个月排放一次	常温	(1-2)*2	W ₃₋₅	含氰高 浓废水				
	水洗	二级逆流水洗	常温	(1-2)*2	W ₃₋₆	含氰废 水				
	活化	酸性活化,用盐酸去除工件上的碱性附着 液	常温	1-2			G ₃₋₄	氯化 氢	S ₃₋₆	酸性废液
	水洗	二级逆流漂洗或者顶喷水洗	常温	(1-2)*2	W ₃₋₇	综合废 水				
	焦铜	阳极为铜板,阴极为工件,槽液主要成分 为焦铜、焦钾	常温	6-12			G ₃₋₅	硫酸 雾	S ₃₋₇	含铜废液
	回收	用水清洗镀件,槽液半个月排放一次	常温	(1-2)*2	W ₃₋₈	综合高 浓废水				
	水洗	二级逆流水洗	常温	(1-2)*2	W ₃₋₉	综合废 水				
	活化	酸性活化,用盐酸去除工件上的碱性附着 液	常温	1-2			G ₃₋₆	氯化 氢	S ₃₋₈	酸性废液

 1			T	1					
水洗	二级逆流水洗	常温	(1-2)*2	W ₃₋₁₀	综合废 水				
酸铜	阳极为铜板,阴极为工件,槽液主要成分 为硫酸铜、硫酸	常温	(14-30)*2			G ₃₋₇	硫酸 雾	S ₃₋₉	含酸铜废液
回收	用水清洗镀件,槽液半个月排放一次	常温	(1-2)*2	W ₃₋₁₁	重金属 高浓废 水				
水洗	二级逆流水洗	常温	(1-2)*2	W ₃₋₁₂	综合废 水				
活化	酸性活化,用盐酸去除工件上的碱性附着 液	常温	1-2			G ₃₋₈	氯化 氢	S ₃₋₁₀	酸性废液
水洗	二级逆流水洗	常温	(1-2)*2	W ₃₋₁₃	综合废 水				
半光镍、	槽液为硫酸镍、硼酸	50-70	10-18/8-10			G ₃₋₉	硫酸	S ₃₋₁₁	过滤废渣
全光 镍	THIR/JOHNER ON TOWNER					-37	雾	S ₃₋₁₂	含镍废液
哑镍	槽液为硫酸镍、硼酸	50-70	2-4			G ₃₋₁₀	硫酸 雾	S ₃₋₁₃	过滤废渣
							257	S ₃₋₁₄	含镍废液
回收	用水清洗镀件,槽液半个月排放一次	常温	(1-2)*2	W ₃₋₁₄	重金属 高浓废 水				
水洗	二级逆流水洗	常温	(1-2)*2	W ₃₋₁₅	含镍废水				
镀铬	槽液为铬酸酐,镀件作为阴极,用镀覆金	常温	2.0				铬酸	S ₃₋₁₅	过滤废渣
设 给	属制成阳极	吊温	3-8			G ₃₋₁₁	雾	S ₃₋₁₆	含铬废液
回收	用水清洗镀件,槽液半个月排放一次	常温	(1-2)*2	W ₃₋₁₆	含铬高 浓废水				
水洗	二级逆流水洗/顶喷水洗	常温	(1-2)*3	W ₃₋₁₇	含铬废 水				

	烘烤	吹干工件表面,再烘烤工件	40-60	8-11						
	下挂		常温							
	上挂	人工将镀件挂在可移动的挂具上	常温	5						
	超声 波除	槽液含 30-50g/L 除油剂,浸泡在槽液中。 槽液排空频次(槽液 1-3 个月排空 1 次)	50-70	5-10					S ₄₋₁	含油槽渣
	油	相似非上例(人相似1-5 月1年11人)							S ₄₋₂	前处理废液
	回收	用水清洗镀件,槽液半个月排放一次	常温	1-2	W ₄₋₁	前处理 高浓废 水				
	水洗	二级逆流水洗	常温	(1-2)*2	W ₄₋₂	前处理 废水				
	酸洗	槽液含 50-100mg/L 盐酸,浸泡在槽液中。 槽液排空频次(槽液 1-3 个月排空 1 次)	常温	1-2			G ₄₋₁	氯化 氢	S ₄₋₃	酸性废液
全自动	回收	用水清洗镀件,槽液半个月排放一次	常温	(1-2)*2	W ₄₋₃	酸性高 浓废水				
环形式	水洗	二级逆流水洗	常温	(1-2)*2	W ₄₋₄	综合废 水				
(72 臂) 挂镀	电解	镀件接在电源阳极上,以镍板为第二电	50.50	2.4					S ₄₋₄	含油槽渣
(镍) 生产线	除油	极,槽液含 40-60g/L 除油剂,浸泡在槽液中。	50-70	2-4					S ₄₋₅	前处理废液
(主) 线	回收	用水清洗镀件,槽液半个月排放一次	常温	1-2	W ₄₋₅	前处理 高浓废 水				
	水洗	二级逆流水洗	常温	(1-2) *2	W ₄₋₆	前处理 废水				
	活化	酸性活化,用盐酸去除工件上的碱性附着 液	常温	1-2			G ₄₋₂	氯化 氢	S ₄₋₆	酸性废液
	水洗	二级逆流漂洗或者顶喷水洗	常温	(1-2) *2	W ₄₋₇	综合废 水				

	半光镍、	槽液为硫酸镍、硼酸	50-70	10-18/8-10			G ₄₋₃	硫酸	S ₄₋₇	过滤废渣
	全光 镍	僧仪分伽政採、咖取	30-70	10-18/8-10		-	G4-3	雾	S ₄₋₈	含镍废液
	镍封	槽液为硫酸镍、硼酸	50-70	2-4			G ₄₋₄	硫酸	S ₄₋₉	过滤废渣
		有自己人名列尼拉 法人 明月日文	30-70	2-4			U4-4	雾	S ₄₋₁₀	含镍废液
	回收	用水清洗镀件,槽液半个月排放一次	常温	(1-2)*2	W ₄₋₈	重金属 高浓废 水				
	水洗	二级逆流水洗	常温	(1-2)*3	W ₄₋₉	含镍废水				
	镀铬	槽液为铬酸酐,镀件作为阴极,用镀覆金 属制成阳极	常温	8-16			G ₄₋₅	铬酸 雾	S ₄₋₁₁	过滤废渣 一 含铬废液
	回收	用水清洗镀件,槽液半个月排放一次	常温	(1-2)*2	W ₄₋₁₀	含铬高 浓废水				
	水洗	二级逆流水洗/顶喷水洗	常温	(1-2)*4	W ₄₋₁₁	含铬废 水				
	热水 洗	用热水清洗	50-70	1-2	W ₄₋₁₂	含铬废 水				
	烘烤	吹干工件表面,再烘烤工件	40-60	8-11						
	下挂		常温							

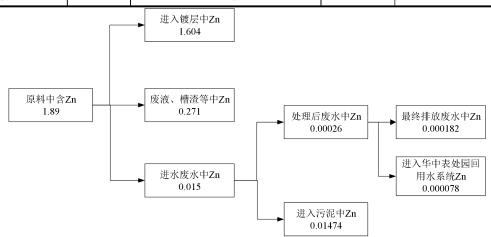
3.3 平衡分析

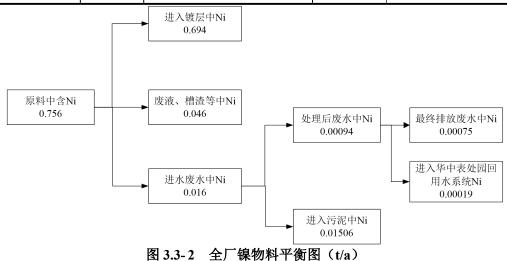
3.3.1 锌物料平衡

拟建项目碱性镀锌层厚度平均为15μm,镀锌面积为1.5万 m²,锌的密度为7.13t/m³,理论消耗锌量1.604t/a,碱性镀锌生产线消耗锌粉0.09t/a,氯化锌1.67t/a,锌板1.0t/a,合计折算消耗锌1.89t/a,锌的利用率约84.87%。镀锌线的锌平衡见表3.3-1。

投入		产出					
进料	t/a	出料	t/a	去向			
锌板中的 Zn (0 价)	1.0	镀件中的 Zn (0 价)	1.604	进入产品			
ZnCl ₂ 中的 Zn (Zn ²⁺)	1.67	废液、槽渣等中的 Zn(Zn ²⁺)	0.271	危废			
锌粉中的 Zn(0 价)	0.09	废水中的 Zn(Zn ²⁺)	0.00026	回用后 Zn 最终排放量为 0.000182			
		污泥中的 Zn(Zn ²⁺)	0.01474	华中表处园电镀废水深度 处理车间污泥,危废			
合计	1.89	合计	1.89				

表 3.3-1 项目锌元素平衡表




图 3.3-1 全厂锌物料平衡图 (t/a)

3.3.2 镍物料平衡

镀镍平均厚度 $15\mu m$,镀镍面积 1.5 万 m^2 ,其中镍占 13%,镍的密度为 $8.9t/m^3$,理论消耗镍量 0.694t/a,酸性镀锌镍生产线消耗锌(镍板、氯化镍折算)约 0.756t/a,镍的利用率约 91.81%。酸性镀锌镍线的镍平衡见表 3.3-4 和图 3.3-2。

投入			产出	
进料	t/a	出料	t/a	去向
镍板中的 Ni(0 价)	0.720	镀件中的 Ni(0 价)	0.694	进入产品
NiCl ₂ 中的 Ni(Ni ²⁺)	0.036	废液、槽渣等中的 Ni (Ni ²⁺)	0.046	危废
		废水中的 Ni(Ni ²⁺)	0.00094	回用后 Ni 最终排放量为 0.00075
		污泥中的 Ni(Ni ²⁺)	0.01506	华中表处园电镀废水深度 处理车间污泥,危废
合计	0.756	合计	0.756	

表 3.3-4 酸性镀锌镍电镀线镍平衡分析

3.3.3 铬物料平衡

拟建项目有色氧化层厚度平均为 0.5μm, 氧化面积为 15000m²。铬的密度为 7190kg/m³, 理论消耗铬量 54kg/a; 本色氧化层厚度平均为 0.5μm, 氧化面积为 5000m²。铬的密度为 7190kg/m³, 理论消耗铬量 18kg/a; 氧化生产线消耗 CrO₃173kg/a, 合计折算消耗 Cr90kg/a, Cr 的利用率约 80%。

镀锌生产线电镀面积为 4 万 m²,镀锌钝化膜中的含铬量约为 15%,镀锌生产线铬理论消耗量 29.064kg,根据原辅料消耗含铬(钝化剂,折单质)45.847kg,铬利用率63.39%。镀锌线中铬元素平衡分析见表 3.3-5。

废水中的铬(Cr³+)

污泥的铬(Cr³+)

合计

投入

kg/a

45.847

45.847

进料

钝化液中铬

 (Cr^{3+})

合计

 产出

 出料
 kg/a
 去向

 镀件中的铬(Cr³+)
 29.064
 进入产品

 废液、槽渣中的铬(Cr³+)
 10.741
 危废

1.202

4.84

45.847

回用后 Cr 最终排放量为 0.813 华中表处园电镀废水深度处理

车间污泥, 危废

表 3.3-5 镀锌线中铬元素平衡分析

镀锌镍生产线电镀面积为 4 万 m²,镀锌镍钝化膜中的含铬量约为 13.5%,镀锌镍生产线铬的理论消耗量 26.158kg,根据原辅料消耗含铬(钝化剂,折单质)37.466kg,铬利用率 69.82%。镀锌镍线中铬元素平衡分析见表 3.3-6。

全厂铬元素平衡见表 3.3-7, 铬利用率为 66.28%。

产出 投入 进料 出料 去向 kg/a kg/a 钝化液中铬 镀件中的铬(Cr3+) 进入产品 37.466 26.158 (Cr^{3+}) 废液、槽渣中的铬(Cr3+) 6.337 危废 废水中的铬(Cr³⁺) 回用后 Cr 最终排放量为 0.797 1.178 华中表处园电镀废水深度处理车 污泥的铬(Cr3+) 3.793 间污泥, 危废 合计 37.466 合计 37.466

表 3.3-6 镀镍线中铬元素平衡分析

#	22.7	全厂铬元素平衡分析
ᅏ	3.3-7	全人物元素半衡分析

投入		产出				
进料	kg/a	出料	kg/a	去向		
钝化液中铬 (Cr³+)	83.313 镀件中的铬(Cr ³⁺)		55.222	进入产品		
		废液、槽渣中的铬(Cr³+)	17.078	危废		
		废水中的铬(Cr³+)	2.38	回用后 Cr 最终排放量为 1.16		
		污泥的铬(Cr³+)	8.633	华中表处园电镀废水深度处理车 间污泥,危废		
合计	83.313	合计	83.313			

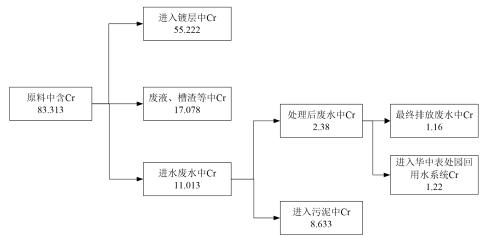


图 3.3-3 全厂铬物料平衡图 (kg/a)

3.3.4 水平衡

本项目用水包括自来水、纯水, 纯水采用纯水制备系统制备, 回用水用于前处理 和地面清洁、滤芯清洗、酸雾净化塔等用水环节。

(1) 生产工艺用水

根据建设单位生产经验可知,项目前处理工序所需生产工艺用水量为13.17m³/d(3950m³/a,其中3450 m³为华中表处园提供的回用水,500m³为纯水),原料带入水10.18 m³/a,进入固废的水为8 m³/a,损耗406.18 m³/a,废水产生量3546 m³/a;镀锌镍工序所需生产工艺用水量为8m³/d(2400m³/a,其中750m³为自来水,1650m³为纯水),原料带入水2.16m³/a,镀件带出水5m³/a,进入固废的水为2.26 m³/a,损耗320.9 m³/a,废水产生量2079 m³/a;镀锌镍工序所需生产工艺用水量为9m³/d(2700m³/a,其中1500m³为一次水,1200m³为纯水),原料带入水1.58 m³/a,镀件带出水5m³/a,进入固废的水为2.26m³/a,进入固废的水为2.26m³/a,损耗323.32 m³/a,废水产生量2376m³/a。各工艺工段用水情况详见下表。

本项目电镀工艺用水(自来水和纯水、回用水)用量为9350 m^3/a ,循环用水量为21700 m^3/a ,回用水1950 m^3/a ,电镀用水重复里利用率为76.17%。

(2) 滤芯清洗用水

项目设置管理副槽对各类工艺槽槽液进行循环处理,清洗机水内循环使用,每天排放 1 次,排放水量分别为 1.8 m³/d(540m³/a)。进入高浓废水收集系统。

(3) 地面清洗用水

本项目各生产车间地面清洗用水约为 1m³/d(300m³/a,为华中表处园回用水), 地面清洗废水产生量按用水量的 90%计,则地面清洗废水产生量为 0.9m³/d(270m³/a), 进入高浓地面清洗水收集管网, 进电镀废水深度处理车间处理。

(4) 酸雾净化塔用水

本项目采用喷淋塔对电镀过程中产生的酸雾进行治理,喷淋塔需定期补充水,采用华中表处园回用水,补充水量为循环水量 1%,800m³/a,蒸发损耗量按照补充水量的 20%计,约为 120m³/a,废水产生量 680m³/a,废水进入前处理废水收集处理系统。

(5) 含氰废气净化塔用水

本项目采用喷淋塔在碱性状态下吸收、氧化氰化物废气,喷淋塔需定期补充水,采用华中表处园回用水,补充水量为循环水量 1‰,800m³/a,蒸发损耗量按照补充水量的 20%计,约为 120m³/a,废水产生量 680m³/a,废水进入前处理废水收集处理系统。

(6) 纯水制备用水

根据水平衡,槽液配制使用纯水量不超过 116.5m3/d,其他清洗工序纯水用量受客户需求而定,总体上纯水用量约占电镀生产新鲜用水量(1962.3m3/d)的 10%左右,即 196.2 m³/d。环评按照 200 m³/d 的制水规模计算,则纯水制备过程浓水产生量约 107.7 t/d。该股水的水质较好,约为 pH7~8、CODcr<40mg/L,属于清净下水,可回用至废气喷淋塔及车间保洁等环节。

(7) 生活用水

本项目劳动定员 50 人,用水量约 $100L/人\cdot d$,年工作 300 天,则生活用水量 1500t/a,排放系数以 0.85 计,则生活污水排放量 1275t/a。水质一般为 $COD_{Cr}350mg/L$ 、 NH_3-N 35mg/L,进入生活污水收集调节池。

(8) 实验室用水

项目车间内设置实验室,进行槽液化验等,用水量约 30m³/a,进入实验废液 0.5m³/a,属于危险废物,损耗 4.5 m³/a,废水排放量 25 m³/a,废水收集进入高浓地面清洗水处理系统。

根据《电镀污染物排放标准》(GB 21900-2008)中表2单位产品基准排水量要求,允许基准排水量为单层200L/m²、多层500L/m²,而本项目废水排放2007 m³/a(未计华中表处园回用水用量),约合157.7L/m²(回用前),满足其相关要求。

本项目水平衡见下表和下图。其中回用水使用量为 5150m³/a, 回用率达到 40.7% (>40%)。

表 3.3-8 项目水平衡分析一览表

序号及名称		用水	工序及过程		排水及水转移过程			
万 5 及 石 柳	一次水	纯水	循环水	小计	废水	损耗	小计	
生产工艺用水	10500	2500	7000	20000	0	13000	20000	
滤芯清洗用水	4000	0	0	4000	1000	0	4000	
地面清洗用水	1200	0	16800	18000	600	600	18000	
酸雾净化塔用水	500	0	0	500	450	50	500	
含氰废气净化塔 用水	1250	0	0	1250	1000	250	1250	
生活用水	10125	0	0	10125	8100	2025	10125	
实验室用水	1560	0	0	1560	0	1560	1560	
合计	29135	2500	23800	55435	11150	17485	55435	

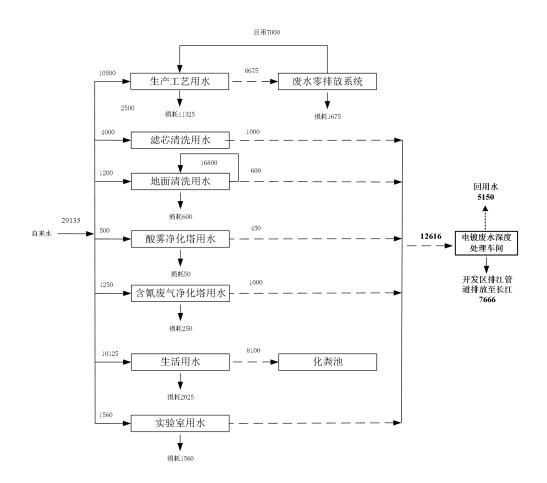


图 3.3-4 项目水平衡分析图 (单位: m³/a)

3.4 污染源源强分析

3.4.1 废水

3.4.1.1 电镀生产线废水情况

本项目生产线产生废水情况详细见下表 3.4-1:

表 3.4-1 电镀生产线废水排放情况一览表

生产线	废水	工艺槽	产	生量	废水类型	排放类型
工)线	编号	工 公馆	m ³ /d	m³/a	及小头至	排放天至
	W_{1-1}	回收槽	0.99	297	前处理高浓废水	间歇排放
1	W ₁₋₂	二级逆流水洗	1.98	594	前处理废水	连续排放,24h
全自动	W ₁₋₃	回收槽	0.99	297	酸性高浓废水	间歇排放
环形式	W ₁₋₄	二级逆流水洗	1.32	396	综合废水	连续排放,24h
(72 略)	W_{1-5}	回收槽	0.99	297	综合高浓废水	间歇排放
臂)挂· 镀(锌)	W ₁₋₆	二级逆流水洗	0.6	180	前处理废水	连续排放,14.4h
暖(锌) 生产线	W ₁₋₇	顶喷水洗槽	2.97	891	综合高浓废水	连续排放,24h
工/ 线	W_{1-8}	顶喷水洗槽	0.99	297	含铬废水	间歇排放
	W ₁₋₉	顶喷水洗槽	0.99	297	含铬废水	间歇排放,7天/次
	W_{2-1}	回收槽	0.99	297	前处理高浓废水	间歇排放
A	W ₂₋₂	二级逆流水洗	0.99	297	前处理废水	超声波水洗串联
全自动	W ₂₋₃	回收槽	0.99	297	酸性高浓废水	间歇排放
环形式	W ₂₋₄	二级逆流水洗	1.98	594	综合废水	连续排放,8h
(60 臂) 挂镀	W_{2-5}	二级逆流水洗	0.99	297	前处理废水	间歇排放
(镍	W_{2-6}	二级逆流水洗	1.98	594	综合废水	连续排放,24h
铬)生	W_{2-7}	回收槽	0.99	297	重金属高浓废水	间歇排放,7天/次
产线	W_{2-8}	二级逆流水洗	1.98	594	含镍废水	连续排放,24h
	W_{2-9}	回收槽	0.99	297	含铬高浓废水	间歇排放
	W_{2-10}	二级逆流水洗	1.98	594	含铬废水	连续排放,24h
	W_{3-1}	回收槽	0.99	297	酸性高浓废水	间歇排放
	W_{3-2}	二级逆流水洗槽	0.99	297	综合废水	间歇排放,7天/次
	W_{3-3}	二级逆流水洗槽	1.98	594	前处理废水	连续排放,24h
	W_{3-4}	二级逆流水洗槽	0.99	297	综合废水	连续排放,8h
	W_{3-5}	回收槽	0.99	297	含氰高浓废水	间歇排放,7天/次
全自动	W_{3-6}	二级逆流水洗	1.98	594	含氰废水	连续排放,24h
环形式	W_{3-7}	顶喷水洗槽	0.99	297	综合废水	连续排放,24h
(80臂)	W_{3-8}	回收槽	0.99	297	综合高浓废水	间歇排放,7天/次
挂镀	W_{3-9}	二级逆流水洗槽	1.98	594	综合废水	连续排放,24h
(铜镍	W_{3-10}	二级逆流水洗槽	0.99	297	综合废水	连续排放,8h
铬)生	W ₃₋₁₁	回收槽	0.99	297	重金属高浓废水	间歇排放,7天/次
产线	W_{3-12}	二级逆流水洗槽	1.98	594	综合废水	连续排放,24h
	W ₃₋₁₃	二级逆流水洗槽	0.99	297	综合废水	连续排放,8h
	W ₃₋₁₄	回收槽	0.99	297	重金属高浓废水	连续排放,24h
	W_{3-15}	二级逆流水洗槽	1.98	594	含镍废水	连续排放,24h
	W ₃₋₁₆	回收槽	0.99	297	含铬高浓废水	间歇排放
	W ₃₋₁₇	二级逆流水洗槽	1.98	594	含铬废水	连续排放,24h
全自动	W_{4-1}	回收槽	0.99	297	前处理高浓废水	间歇排放,7天/次
环形式	W ₄₋₂	二级逆流水洗槽	0.99	297	前处理废水	间歇排放
(72臂)	W_{4-3}	回收槽	0.99	297	酸性高浓废水	间歇排放,7天/次

生产线	废水	工艺槽	产	生量	応え来刊	· 北 · · · · · · · ·
土厂线	编号	工 公僧	m ³ /d	m³/a	- 废水类型	排放类型
挂镀	W ₄₋₄	二级逆流水洗槽	0.99	297	综合废水	间歇排放
(镍)	W ₄₋₅	回收槽	0.99	297	前处理高浓废水	间歇排放,7天/次
生产线	W ₄₋₆	二级逆流水洗槽	0.99	297	前处理废水	连续排放,24h
	W ₄₋₇	二级逆流水洗槽	1.98	594	综合废水	连续排放,24h
	W_{4-8}	回收槽	0.99	297	重金属高浓废水	间歇排放,7天/次
	W ₄₋₉	二级逆流水洗槽	0.99	297	含镍废水	间歇排放
	W_{4-10}	回收槽	0.99	297	含铬高浓废水	间歇排放,7天/次
	W_{4-11}	二级逆流水洗槽	1.99	298	含铬废水	间歇排放
	W ₄₋₁₂	热水槽	0.99	297	含铬废水	间歇排放
	W_5	挂镀 (锌) 生产线滤芯清洗废水	0.4	120	综合高浓废水	间歇排放
	\mathbf{W}_6	挂镀(镍铬)生产线滤芯清洗废水	0.4	120	重金属高浓废水	间歇排放
过滤机 清洗	W ₇	挂镀(铜镍铬)生产线滤芯清洗废 水	0.4	120	重金属高浓废水	间歇排放
	W_8	挂镀(镍)生产线滤芯清洗废水	0.4	120	重金属高浓废水	间歇排放
	W_9	钝化过滤机滤芯清洗废水	0.1	30	高浓含铬废水	间歇排放
	\mathbf{W}_{10}	封闭过滤机滤芯清洗废水	0.1	30	重金属高浓废水	间歇排放
	W_{11}	地面清洗废水	1.8	540	高浓地面清洗水	间歇排放
	W_{12}	酸雾净化塔废水	0.5	150	前处理废水	间歇排放
1	W ₁₃	含氰废气净化塔废水	0.5	150	前处理废水	间歇排放
其他	W ₁₄	纯水制备废水	0.5	150	高浓纯水制备废水	间歇排放
	W ₁₅	生活污水	5	1500	生活污水	间歇排放
	W ₁₆	实验室废水	0.08	25	综合高浓废水	间歇排放

3.4.1.2 废水详细分类情况

本项目各类工艺废水分类统计见下表:

表 3.4-2 各类废水统计表

编号	废水种类	主要特征污染物	排放量(m³/d)	排放量 (m³/a)
W ₁₋₁ , W ₂₋₁ , W ₄₋₁ , W ₄₋₅	前处理高浓废水	pH、COD、石油类	1.98	594
W_{1-2} , W_{1-6} , W_{2-2} , W_{2-5} , W_{3-3} , W_{4-2} , W_{4-6} , W_{12} , W_{13}	前处理废水	pH、COD、石油类	22.61	6783
W ₁₋₃ , W ₂₋₃ , W ₃₋₁ , W ₄₋₃	酸性高浓废水	pH、COD、锌、镍	3.96	1188
W ₁₋₄ , W ₂₋₄ , W ₂₋₆ , W ₃₋₂ , W ₃₋₄ , W ₃₋₇ , W ₃₋₉ , W ₃₋₁₀ , W ₃₋₁₂ , W ₃₋₁₃ , W ₄₋₄ , W ₄₋₇	综合废水	pH、COD、石油类	1.39	417
W_{1-5} , W_{1-7} , W_{3-8} , W_5 , W_{16}	综合高浓废水	COD、锌、镍、铬	0.99	297
W ₃₋₅	含氰高浓废水	COD、铜	2.97	891
W ₂₋₉ , W ₃₋₁₆ , W ₄₋₁₀ , W ₉	含铬高浓废水	COD、铬	3.07	921
W ₁₋₈ , W ₁₋₉ , W ₂₋₁₀ , W ₃₋₁₇ , W ₄₋₁₁ , W ₄₋₁₂	含铬废水	COD、铬	8.92	2676
W ₃₋₆	含氰废水	COD、铜	5.94	1782
W ₂₋₈ , W ₃₋₁₅ , W ₄₋₉	含镍废水	COD、镍	4.95	1485
W ₂₋₇ , W ₃₋₁₁ , W ₃₋₁₄ , W ₄₋₈ , W ₆ , W ₇ , W ₈ , W ₁₀	重金属高浓废水	COD、锌	1.49	447
W_{11}	高浓地面清洗水	COD、锌、镍、铬	1.88	564
W_{14}	高浓纯水制备废水	盐分	0.5	150

W_{15}	生活污水	COD 、SS L、NH3-N	12	3600
合计			66.69	20007

(1) 前处理高浓废水(W_{1-1} 、 W_{2-1} 、 W_{4-1} 、 W_{4-5})

该类废水间歇排放,为除油工序后回收槽废水,除油剂中不含磷,约 1-3 个月排空 1 次,单次排放量约 6.9m^3 ,折算 $1.98 \text{ m}^3/\text{d}$ 。主要污染物产生浓度分别为 pH $8\sim10$ 、COD 1000 mg/L、SS 500 mg/L、石油类 50 mg/L、氨氮 40 mg/L。

(2) 高浓酸性废水(W₁₋₃、W₂₋₃、W₃₋₁、W₄₋₂)

该类废水间歇排放,为酸洗、酸活化工序后回收槽废水,约 7d 更换回收槽水,单次排放量约 6.9m^3 ,折算 1.98 m^3 /d。主要含盐酸以及锌、镍(退镀后清洗),主要污染因子为 pH $2\sim3$,COD 350 mg/L、SS 150 mg/L、氨氮 20 mg/L、总锌 3 mg/L、总镍 0.7 mg/L。

(3) 前处理废水(W₁₋₂、W₁₋₄、W₁₋₇、W₂₋₂、W₂₋₄、W₂₋₆、W₃₋₂、W₃₋₃、W₃₋₄、W₃₋₇、
W₃₋₁₃、W₄₋₁、W₄₋₃、W₄₋₅、W₄₋₆、W₁₀)

前处理废水主要包括除油、酸洗等工序后第二道及以后清洗水和出光工序后清洗水、酸雾净化塔废水,除酸雾净化塔废水间歇排放之外,其余废水均连续排放,日平均排放量 11.33 m³/d。主要污染物为 pH 4~6、COD 500 mg/L、SS 180 mg/L、石油类 15 mg/L。

(4) 高浓含镍废水(W₂₋₇、W₃₋₁₃、W₄₋₇)

高浓含镍废水主要包括镀镍后回收槽废水和镀镍过滤机滤芯清洗废水,间歇排放, 日平均排放量 1.39m³/d。主要污染物及浓度为: COD 800mg/L、SS 350mg/L、总锌 481mg/L、总镍 35mg/L。

(5) 高浓含铜废水(W₃₋₅、W₃₋₈、W₃₋₁₁)

高浓含铜废水主要包括镀铜后回收槽废水和镀铜过滤机滤芯清洗废水,间歇排放, 日平均排放量 0.99m³/d。主要污染物及浓度为: COD 500mg/L、SS 200mg/L、总锌 15mg/L、总镍 1.38mg/L。

(6) 高浓含铬废水(W₂₋₉、W₃₋₁₅、W₄₋₉、W₇)

高浓含铬废水包括钝化工序后回收槽废水和钝化过滤机清洗废水,间歇排放,日平均排放量2.08m³/d。主要污染物及浓度为: COD 600mg/L、SS 280mg/L、总铬13.7mg/L。

(7) 含铬废水(W₁₋₈、W₁₋₉、W₂₋₁₀、W₃₋₁₆、W₄₋₁₀、W₄₋₁₁)

含铬废水包括钝化工序后的水洗废水,连续排放,日排放量 3.96m³/d。主要污染物及浓度为: COD 300mg/L、SS 100mg/L、总铬 1.6mg/L。

(8) 含铜废水 (W₃₋₆、W₃₋₉、W₃₋₁₂)

含铜废水包括镀铜工序后的水洗废水,连续排放,日排放量 1.98m³/d。主要污染物及浓度为: pH 3-5、COD 200mg/L、SS 80mg/L、总锌 15.2mg/L。

(9) 含镍废水(W₂₋₈、W₃₋₁₄、W₄₋₈)

含镍废水包括镀镍工序后的水洗废水,连续排放,日排放量 1.98m³/d。主要污染物及浓度为: pH 3-5、COD 200mg/L、SS 80mg/L、总锌 15.2mg/L。

(10) 含锌废水 (W₁₋₆)

含锌废水包括镀锌工序后的水洗废水,连续排放,日排放量 1.98m³/d。主要污染物及浓度为: pH 3-5、COD 200mg/L、SS 80mg/L、总锌 15.2mg/L。

(11) 高浓重金属废水 (W_{1-5} 、 W_6 、 W_8)

高浓重金属废水主要包括镀锌工序后回收槽废水和过滤机清洗废水,间歇排放, 日均排放量为 2.48m³/d。主要污染物及浓度为: COD 500mg/L、SS 200mg/L、总锌 69mg/L。

(12) 高浓地面清洗水 (W₉、W₁₁)

高浓地面清洗水包括生产车间地面清洗废水和实验室、化验室废水,间歇排放, 日排放量 1.88m³/d。主要污染物及浓度为: COD 600mg/L、SS 400mg/L、总锌 10mg/L、总镍 1.2mg/L、总铬 1.1mg/L。

(13) 办公生活污水

本项目生活污水为 $3600 \text{m}^3/\text{a}$,生活污水的产生量约 $12 \text{m}^3/\text{d}$ 。废水中主要污染物及 其浓度分别为 COD 350 mg/L、SS 250 mg/L、NH₃-N 25 mg/L。

3.4.1.3 本项目废水产排汇总

本项目各污染物产生产生情况见下表 3.4-3。

表 3.4-3 本项目废水污染物产生及预测排放情况一览表

			1X 3.4	<u> </u>	17/2/	N7条物)主义Jy例1ft以1	10L VL			
序		废水		产生浓度	产生昰		排放浓度	排放量	(t/a)	排放标准
号	污染源	量 m³/a	污染物	(mg/L)	(t/a)	治理措施	(mg/L)*	无回用	有回用	(mg/L)
			pH(无量 纲)	8~10		进电镀废水深度处理车间高 浓有机废水收集隔油/调节池	6~9			6~9
			COD	1000	0.594	(80m³/d),经高浓酸性废水	60	0.036	0.020	60
1	高浓有机	1782	氨氮	40	0.024	处理系统中一级反应/沉淀池	5	0.0030	0.002	5
•	废水	1,02	SS	500	0.297	组后,再进入前处理、回用水	50	0.030	0.017	50
			石油类	50	0.030	处理系统, 回用水量 262.9m³/a (44.27%回用),排放量 331.1m³/a	1	0.0006	0.0003	1
			pH(无量 纲)	2~3		进电镀废水深度处理车间高 浓酸性废水收集处理系统	6~9			6~9
	高浓酸性		COD	350	0.208	(80m³/d) ,与高浓有机废水	60	0.036	0.020	60
2	一 	1188	氨氮	20	0.012	反应沉淀,进入前处理废水、	5	0.0030	0.0017	5
	/及/八		SS	150	0.089	回用水处理系统,回用水量	50	0.030	0.017	50
			总锌 a	3	0.002	262.9m³/a(44.27%回用),排	1.5	0.0009	0.0005	1.5
			总镍b	0.7	0.00042	放量 331.1m³/a	0.5	0.00030	0.00017	0.5
			pH(无量 纲)	4~6		进电镀废水深度处理车间前 处理废水收集处理系统	6~9			6~9
2	前处理废	6783	COD	500	1.700	(1000m³/d),再进入回用水	60	0.204	0.114	60
3	水	0/83	氨氮	20	0.068	处理系统, 回用水量	5	0.017	0.009	5
			SS	180	0.612	1504.6m³/a(44.27%回用),	50	0.170	0.095	50
			石油类	15	0.051	排放量 1894.4 m³/a	1	0.003	0.002	1
			pH(无量 纲)	3~5			6~9			6~9
	= \tau \tau \tau \tau		COD	800	0.334	进电镀废水深度处理车间高	60	0.025	0.025	60
4	高浓锌络 废水	120	氨氮	30	0.013	浓锌络废水收集处理系统 (400m³/d),再进入综合废	5	0.0021	0.0021	5
	及小		SS	350	0.146	(400m ⁷ d),再进八综 _日 及 水处理系统,排放量 417 m ³ /a	50	0.021	0.021	50
			总锌 a	481	0.2006	/小人之工小儿, IT从里 TI / III / a	1.5	0.0006	0.0006	1.5
			总镍b	35	0.0146		0.5	0.00021	0.00021	0.5
			pH(无量 纲)	5~7		进电镀废水深度处理车间络	6~9			6~9
			COD	500	0.149	合废水收集处理系统	60	0.018	0.010	60
5	络合废水	297	氨氮	25	0.007	(230m³/d),再进入回用水	5	0.00149	0.0008	5
			SS	200	0.059	处理系统,回用水量 131.5m³/a (44.27%回用),排放量	50	0.015	0.008	50
			总锌 a	15	0.0045	165.5m ³ /a	1.5	0.00045	0.00025	1.5
			总镍b	1.38	0.0004	3-22-1-2	0.5	0.00015	0.00008	0.5

			pH(无量			进电镀废水深度处理车间高				
			纲)	3~5		浓含铬废水收集处理系统	6~9			6~9
			COD	600	0.374	(40m³/d),再进入含铬废水	60	0.037	0.021	60
6	高浓含铬	921	氨氮	20		处理系统,再进入回用水处理	5	0.0031	0.002	5
	废水		SS	280	0.175	系统,回用水量 276.2m³/a	50	0.031	0.017	50
						(44.27%回用),排放量 347.8				
			总铬b	13.7	0.0085	m³/a	1.0	0.0006	0.00035	1.0
			pH(无量	4~6		进电镀废水深度处理车间含	6~9			6~9
			纲)	7.0		铬废水收集处理系统	0 - 7			0.7
7	含铬废水	2676	COD	300	0.356	(760m³/d),再进入回用水	60	0.071	0.040	60
'	日阳及八	2070	氨氮	10	0.012	处理系统,回用水量 525.9m³/a	5	0.006	0.003	5
			SS	100	0.119	(44.27%回用),排放量 662.1	50	0.059	0.033	50
			总铬 b	1.6	0.0019	m³/a	1.0	0.0012	0.00066	1.0
			pH(无量	4~6		进电镀废水深度处理车间综	6~9			6~9
			纲)	4~0		合废水收集预处理系统	0~9			0~9
8	综合废水	594	COD	200	0.119	(600m³/d),再进入回用水	60	0.036	0.020	60
0	绿日	394	氨氮	10	0.006	处理系统,回用水量 262.9m³/a	5	0.0030	0.002	5
			SS	80	0.048	(44.27%回用),排放量	50	0.030	0.017	50
			总锌 a	15.2	0.0090	331.1m³/a	1.5	0.00089	0.0005	1.5
			pH(无量	3~5		进电镀废水深度处理车间高	6~9			6~9
			纲)	3,43		浓度重金属废水收集预处理	0 - 7			0.7
9	高浓重金	447	COD	500	0.372	系统(80m³/d),再进入回用	60	0.045	0.025	60
)	属废水	447	氨氮	20	0.015	水处理系统,回用水量	5	0.0037	0.002	5
			SS	200	0.149	329.3m³/a(44.27%回用),排	50	0.037	0.021	50
			总锌 a	69	0.0513	放量 414.7m³/a	1.5	0.00112	0.0006	1.5
			pH(无量	6~8			6~9			6~9
			纲)	0 0		洪 · · · · · · · · · · · · · · · · · · ·				
			COD	600	0.339	进电镀废水深度处理车间高浓地面清洗废水收集预处理	60	0.034	0.034	60
10	高浓地面	564	氨氮	35	0.020	系统(200m³/d),再进入综	5	0.003	0.003	5
10	清洗水	304	SS	400	0.226	合废水处理系统,排放量	50	0.028	0.028	50
			总锌 ª	10	0.0056	565m ³ /a	1.5	0.0008	0.00085	1.5
			总镍b	1.2	0.0007		0.5	0.00028	0.00028	0.5
			总铬b	1.1	0.00062		1.0	0.00057	0.00057	1.0
			COD	350	1.260	生活污水经收集进入调节池	60	0.216	0.120	60
			氨氮	25	0.090	(200m³/d),再进入回用水	5	0.018	0.010	5
11	生活污水	3600				处理系统, 回用水量				
			SS	250	0.900	1593.6m³/a(44.27%回用),	50	0.180	0.100	50
						排放量 2006.4m³/a				
12	合计	20007	COD		5.709	废水分类收集进电镀废水深	60	0.757	0.448	60

	氨氮	 0.276	度处理车间处理,回用水量	5	0.063	0.038	5
	SS	 2.207	5150 m³/a,排放水量 7466 m³/a	50	0.461	0.373	50
	石油类	 0.081		1	0.0040	0.0022	1
	总锌 a	 0.273		1.5	0.00482	0.00339	1.5
	总镍b	 0.016		0.5	0.00094	0.00075	0.5
	总铬b	 0.011		1.0	0.00238	0.00161	1.0

注: a 车间或生产设施废水排放口考核指标; b 总排口考核指标。*排放浓度: 排放浓度以标准限值计。

3.4.2 废气

拟建项目营运期废气主要包括酸洗、酸活化、电镀、出光等工序产生的盐酸雾、 硫酸雾、硝酸雾等,镀铬工序产生的铬酸雾、预镀铜产生的氰化氢。项目使用氢氧化 钠等碱,产生少量的碱雾。

(1) 碱雾

拟建项目电解除油、化学除油、碱性镀液等过程中会产生碱雾,由于碱液浓度较低,碱雾产生量小,且经集气收集后与酸中和,基本无排放。本次评价中进行定性分析。

(2) 酸性废气

a. 废气排放量

根据《污染源源强核算技术指南电镀》中废气污染物源源强核算方法中产污系数法,污染物产生量计算方法为:

$D=Gs \times A \times t \times 10^{-6}$

式中: D-核算时段内污染物产生量, t;

Gs一单位渡槽液面面积单位时间大气污染物产生量, $g/(m^2 \cdot h)$;

A一渡槽液面面积, m^2 ;

t-核算时段内污染物产生时间, h。

建设项目酸性废气基准排气量计算表见表 3.4-4。

生产工艺 产能 m²/年 系数 m³/m² 基准排气量 m³/年 27.9×10^{4} 碱性镀锌 15000 18.6 镀镍 10000 37.3 37.3×10^4 镀铬 5000 74.4 37.2×10^4 镀铜 5000 37.3 18.7×10^{4} 镀镍 5000 37.3 18.7×10^4 镀铬 5000 74.4 37.2×10^4 镀镍 10000 37.3 37.3×10^4 镀铬 5000 74.4 37.2×10^4 合计 251.5×10^4

表 3.4-4 基准排气量计算表

本项目设计风量为 24000m³/h (17280 万 m³/a), 大于基准排气量, 根据《电镀污

染物排放标准》(GB21900-2008),本项目按基准排气量核算、评价污染物达标情况。 b.废气源强

酸雾产生量的大小与生产规模、酸用量、酸浓度、作业条件、作业面面积有密切的关系。酸雾排放速率可按照《污染源源强核算技术指南 电镀》(HJ984-2018)计算,详见表 3.4-5。

本项目采用双侧抽风收集废气,加顶吸,收集率按 90%计。处理其中氯化氢、硫酸雾、硝酸雾采用喷淋塔中和法处理,共设置 2 套酸雾收集处理装置,每套酸雾净化塔采用三级碱液吸收,参考《电镀污染防治最佳可行技术指南(实行)》(征求意见稿),一级碱液中和盐酸雾去除率为 90%,随着盐酸雾浓度降低,去除效率降低,二级碱液中和去除率为 80%,三级碱液中和去除率为 60%,三级碱液吸收去除效率可达 99.2%,本次评价盐酸雾去除效率以 99%计。前处理和后处理工序产生的酸雾经收集后,由一个酸雾净化塔处理,风机风量 24000 m³/h。镀槽产生的酸雾经收集后,由一个酸雾净化塔处理,风机风量 24000 m³/h。

铬酸雾采用喷淋塔凝聚回收法处理,该技术铬酸废气回收率约95%。铬酸雾废气经收集后由铬酸雾喷淋塔处理,风机风量13800 m³/h。

氰化氢采用喷淋塔吸收氧化法处理,该技术氰化物净化率为90%~96%。氰化氢由含氰废气喷淋塔处理,风机风量13800 m³/h。

处理后的废气一并通过 35m 高排气筒排放。本项目废气产排情况详细见表 3.4-6。

表 3.4-5 酸性废气蒸发量计算一览表

编号	产污点	污染物	液槽长 mm	液槽宽 mm	蒸发面积 m²	液槽温 度℃	槽液浓度	Gs g/(m².h)	产生速率 kg/h	使用时 间 h	产生量 t/a
G ₁₋₁	酸洗槽	HCl	900	700	0.63	常温	15%	107.3	0.068	900	0.061
G ₁₋₂	碱镀锌槽	氢氧化钠	12500	900	11.25	常温	0.05%			7200	
G ₁₋₃	出光槽	硝酸雾	900	700	0.63	常温	1%			60	
G ₂₋₁	酸洗槽	HC1	1800	900	1.62	常温	15%	107.3	0.174	900	0.156
G ₂₋₂	酸活化槽	HCl	900	600	0.54	常温	6%	15.8	0.009	7200	0.061
G ₂₋₃	化学镀镍 槽	硫酸雾	8000	900	7.2	50-70	60-70g/L			7200	
G ₂₋₄	镍封槽	硫酸雾	1200	900	1.08	50-70	60-70g/L	-		7200	
G ₂₋₅	镀铬槽	铬酸雾	3000	900	2.7	18-25	150-180g/L	0.38	0.001	7200	0.007
G ₃₋₁	酸洗槽	硫酸雾	900	450	0.405	常温	15%	-		900	
G ₃₋₂	酸活化槽	HCl	900	450	0.405	常温	6%	15.8	0.006	7200	0.046
G ₃₋₃	碱铜槽	氰化氢	3150	900	2.835	常温	10%	5.4	0.015	7200	0.110
G ₃₋₄	酸活化槽	HCl	900	450	0.405	常温	6%	15.8	0.006	7200	0.046
G ₃₋₅	焦铜槽	硫酸雾	4500	900	4.05	常温	60-70g/L	-		7200	
G ₃₋₆	酸活化槽	HCl	900	450	0.405	常温	6%	15.8	0.006	7200	0.046
G ₃₋₇	酸铜槽	硫酸雾	6300	900	5.67	常温	60-70g/L			7200	
G ₃₋₈	酸活化槽	HCl	900	450	0.405	常温	6%	15.8	0.006	7200	0.046
G ₃₋₉	镀镍槽	硫酸雾	4500	900	4.05	50-70	60-70g/L	-		7200	
G ₃₋₁₀	镍封槽	硫酸雾	1200	900	1.08	50-70	60-70g/L	-		7200	
G ₃₋₁₁	镀铬槽	铬酸雾	900	900	0.81	常温	150-180g/L	0.38	0.0003	7200	0.002
G ₄₋₁	酸洗槽	HC1	1800	900	1.62	常温	15%	107.3	0.174	900	0.156
G ₄₋₂	酸活化槽	HC1	900	600	0.54	常温	6%	15.8	0.009	7200	0.061
G ₄₋₃	镀镍槽	硫酸雾	9600	900	8.64	50-70	60-70g/L			7200	
G ₄₋₄	镍封槽	硫酸雾	900	600	0.54	50-70	60-70g/L			7200	
G ₄₋₅	镀铬槽	铬酸雾	4000	900	3.6	常温	150-180g/L	0.38	0.001	7200	0.010

表 3.4-6 本项目废气产排情况一览表

					1		J.T- U	个火口	1/2 () 17		<u> </u>		1		ı	
	污染源	废气排	基准排	排放	污染物	污染	2物产生情	况		污染物排	放情况		排放标准	<u>></u> >+ 12-		上 17人 かん ナ
编号	名称	放量 Nm3/h	气量	时间 h/a	名称	产生浓度 (mg/Nm3)	产生速率 (kg/h)	产生量 (t/a)	排放浓度 (mg/Nm3)	基准排放 浓度 (mg/Nm3)	排放速率 (kg/h)	排放量 (t/a)	浓度 (mg/m3)	污染防 治措施	排放情况	去除效率 (%)
G1-1	酸洗槽 废气			900	HCl		0.068	0.061			0.00068	0.001				99
G2-1	酸洗槽 废气			900	HC1		0.174	0.156			0.00174	0.002				99
G3-1	酸洗槽 废气	-		900	硫酸雾											99
G4-1	酸洗槽 废气	-		900	HCl	1	0.174	0.156			0.00174	0.002				99
G1-3	出光废 气			60	硝酸雾	-	0.068	0.004			0.00068	0.000				99
G2-2	酸活化 废气			7200	HCl		0.009	0.061			0.00009	0.001		酸雾净	 进厂房烟道	99
G3-2	酸活化 废气			7200	HCl		0.006	0.046			0.00006	0.000		化塔	70, 77, 170	99
G3-4	酸活化 废气	1	-	7200	HC1	1	0.006	0.046			0.00006	0.000				99
G3-6	酸活化 废气	1	-	7200	HCl	1	0.006	0.046			0.00006	0.000				99
G3-8	酸活化 废气	-	-	7200	HCl	1	0.006	0.046			0.00006	0.000				99
G4-2	酸活化 废气	1	1	7200	HCl	1	0.009	0.061			0.00009	0.001				99
刁	计	24000		7200	HCl		0.526	0.685			0.00526	0.007	30			99
G1-2	镀碱镀 锌槽废 气			7200	HCl		1.207	8.691			0.01207	0.087		酸雾净	进厂房烟道	99
G2-3	镀镍槽 废气			7200	硫酸雾									化塔		99

	镍封槽				*****									
G2-4	废气			7200	硫酸雾	 		 						99
G3-3	碱铜槽 废气			7200	氢氰酸	 0.015	0.110		0.00015	0.001				99
G3-5	焦铜槽 废气		1	7200	硫酸雾	 		 						99
G3-7	酸铜槽 废气		-	7200	硫酸雾	 		 						99
G3-9	镀镍槽 废气			7200	硫酸雾	 		 						99
G3-10	镍封槽 废气			7200	硫酸雾	 		 					·	99
G4-3	镀镍槽 废气			7200	硫酸雾	 		 					·	99
G4-4	镍封槽 废气			7200	硫酸雾	 		 						99
					HC1	 1.207	8.691	 	0.01207	0.087				99
\	卜计	24000		7200	氢氰酸	 0.015	0.110	 	0.00015	0.001	30			99
G2-5	镀铬槽 废气			7200	铬酸雾	 0.001	0.007		0.00001	0.000				99
G3-11	镀铬槽 废气			7200	铬酸雾	 0.0003	0.002		0.00000	0.000		铬酸雾 废气喷	进厂房烟道	99
G4-5	镀铬槽 废气		-	7200	铬酸雾	 0.001	0.010		0.00001	0.000		淋塔		99
1	小计	13800	-	7200	铬酸雾	 0.003	0.019	 	0.00003	0.000	30			99
				7200	HCl	 1.733036	17.3826	 	0.01733	0.174				99
	只废气合 计	61800		7200	氢氰酸	 0.015	0.110	 	0.00015	0.001			排气烟道高度 35m, 内径 1m	99
	*1			7200	铬酸雾	 0.003	0.019	 	0.00003	0.000		1	22m, [1] 1 1m	99
	E组织废 气			7200	HCl	 0.0208	0.15	 	0.0208	0.15			无组织排放	

3.4.3 噪声

主要声源为酸雾净化塔风机、空压机、鼓风机等,各类噪声设备源强见下表。

数量 治理前 dB 治理后 dB 序号 位置 治理措施 产噪设备 (台套) (A) (A) 超声波除油 车间内 65~80 墙体隔声 55 1 2 消声、减振 2 净化塔风机 3 车间外 75~90 60 3 空压机 1 车间内 减振、隔声 85~100 70 鼓风机 车间内 减振、隔声 4 3 85~90 65 5 制冷机 2 车间内 70~85 减振、隔声 60

表 3.4-7 本项目噪声源强一览表

3.4.4 固废

本项目产生的工业固体废物均为危险废物,主要包含废过滤渣、废滤芯、倒槽废液、化学品包装物、检验废液等,此外还产生员工生活垃圾。

(1) 危险废物

本项目危险废物产生总量为23.59t/a,危废设加盖桶收集,暂存于车间危废暂存点,危险废物实行联单制管理,各类危险废物送华中表处园内危废暂存间暂存,定期交由有资质的单位清运处置。危险废物产生详情见下表3.4-8。

编号	名称	危废类别	产生位置	产生量 (t/a)
S ₁₋₁ , S ₂₋₁ , S ₂₋₄ , S ₃₋₂	含油槽渣	HW17 336-064-17	除油管理副槽	5
S ₁ -2, S ₂₋₂ , S ₂₋₅ , S ₃₋₃ , S ₃₋₅	前处理废液	HW17 336-064-17	超声波除油槽、化学除油槽、电解除油槽	4.5
S_{1-3} , S_{2-3} , S_{3-1}		HW17	酸洗槽	3.6
S ₂₋₆ , S ₃₋₄ , S ₃₋₆ , S ₃₋₈ , S ₃₋₁₀	酸性废液	336-064-17	酸活化槽	2.5
S ₁₋₅			出光槽	1.2
S ₁₋₄ , S ₁₋₆ , S ₁₋₈ , S ₂₋₇ , S ₂₋₈ , S ₂₋₉ ,	含锌废过滤渣、 滤芯	HW17 336-052-17、 336-054-17	镀碱锌过滤机	0.35
S ₃₋₁₁ , S ₃₋₁₂ , S ₃₋₁₃	含铬废过滤渣、 滤芯	HW17 336-068-17	钝化过滤机	0.46

表 3.4-8 本项目工业固废产生情况一览表

	过滤废渣、滤芯	HW17 336-063-17		0.45
	含锌过滤渣、滤 芯	HW17 336-052-17	镀锌过滤机	0.38
S ₁₋₇ 、 S ₁₋₉	废钝化槽液	HW17 336-068-17	钝化槽	2.8
S_6	废化学品包装	HW49 900-041-49	各种电镀化学品包 装物	0.5
S ₇	实验废液	HW17 336-063-17	实验室	0.65
合计				23.59

(2) 职工的生活垃圾

职工生活垃圾产生量按 0.5kg/人.d 计,员工为 50 人,按工作日 300d,产生量 7.5t/a;由环卫部门统一清运处理。

(3) 废劳保用品

员工每周更换一次抹布、手套等劳保用品,更换下来的废弃劳保用品量约为1.25t/a,属于 HW49 类危险废物,根据《危险废物名录(2016 版)》的规定,废弃劳保用品混入生活垃圾中进行收集处理,属于豁免类,可以按照一般固体废物进行处置,不需按照危险废物进行处置。

3.4.5 非正常工况主要污染源强分析

3.4.5.1 项目废气非正常排放情况分析

根据项目废气排放特点及危害特性,本项目废气处理设施为 2 台酸雾净化塔。非正常排放选择 2 套酸雾净化塔同时出现问题,酸雾治理效率为 0%时计算,拟建项目废气非正常排放源强详见表 3.4-8。

污染源	污染物	废气产生量(m³/h)	排放浓度(mg/m³)	事故工况排放量 kg/h
301#厂房 烟道	HCl	24000	7.51	0.639

表 3.4-9 项目废气非正常排放情况一览表

企业应加强污染防治设施的日常运行管理,确保废气经正常处理后达标排放。一 旦监测到非正常工况,应待装置故障排除并恢复正常运行后再行生产。

3.4.5.2 项目废水非正常排放情况分析

项目产生的废水进入到华中表处园电镀废水深度处理车间进行处理,若项目在生

产过程发生事故排水或电镀废水深度处理车间不能正常运行时,按照华中表处园规定要求项目产生的废水进入到华中表处园设置的事故池中,待排除事故后,废水再分类进入到废水处理系统中进行处理。由于项目依托华中表处园的电镀废水深度处理车间和风险事故池,因此废水的非正常排放进行简要分析。

3.4.6 项目投产后污染物产生及排放情况汇总

项目投产后污染物产生及排放情况汇总见表 3.4-10:

表 3.4-10 本项目污染物产生及排放情况汇总表

类		污染源	排放量	污染物 名称	产生浓度 (mg/m³)	产生量 (t/a)	排放浓度* (mg/m³)	污染物排放量 (t/a)	排放标准 (mg/m³)	处理措施	处理率 (%)	
废气	有组织	电镀废气	24000m ³ /h	HCl	7.51	1.351	0.08 (20.56)	0.014	30	由 2 套装酸雾净化 塔装置处理后经一 根 35m 高厂房烟道 排放	99	
	无组织	车间		HC1		0.0135		0.0135		加强管理,设置卫 生防护距离		
				COD		5.709	60 mg/L	0.448	60 mg/L			
			废水产生量	NH ₃ -N		0.276	5 mg/L	0.038	5 mg/L	。 · 废水分类收集进电		
			12616m³/a,	SS	生产废水分	2.207	50 mg/L	0.373	50 mg/L] 镀废水深度处理车		
房	き水	生产、生活废水	回用水量 5150 m ³ /a,	石油类	10 类收集,浓 度详见表	0.081	1 mg/L	0.0022	1 mg/L	间处理, 经开发区		
			排放水量	总锌	3.4-3	0.273	1.5 mg/L	0.00339	1.5 mg/L	排江管道排放至长		
					7466 m ³ /a	总镍		0.016	0.5 mg/L	0.00075	0.5 mg/L	江
				总铬		0.011	1.0 mg/L	0.00161	1.0 mg/L			
	固体废物	危险废物		废槽渣、 废槽液 等	详见表 3.4-8	23.59		0		委托有资质单位处 理	100	
2	捌	职工生活		生活垃圾		15		0		委托环卫部门统一 清运	100	

3.5 清洁生产分析

3.5.1 电镀行业清洁生产技术要求及需达到水平

为贯彻落实《清洁生产促进法》(2012 年修正案),进一步形成统一、系统、规范的清洁生产技术支撑文件体系,指导和推动企业依法实施清洁生产,国家发改委、环保部、工信部于 2015 年 10 月公布了《电镀行业清洁生产评价指标体系》(2015),该体系给出了电镀行业生产过程清洁生产水平的三级技术指标:一级为国际清洁生产先进水平;二级为国内清洁生产先进水平;三级为国内清洁生产基本水平。根据要求,拟引进企业清洁生产应达到原《清洁生产标准 电镀行业》(HJ/T314-2006)二级标准要求以上,因此拟建项目电镀生产线的清洁生产水平须达到二级及以上。

3.5.2 项目清洁生产水平分析

3.5.2.1 生产工艺与装备要求

- (1)项目在华中表处园建设,按要求规范车间布置。并结合产品质量要求,采用 了清洁的生产工艺。项目为全自动生产线,符合要求。
 - (2) 各镀槽后设有回收槽回收镀液,减少了污染物的排放。
- (3)项目采用了节能的电镀设备,清洗方式采用多级逆流漂洗工艺,在生产线维护过程中为保证放空槽内存水,在前几级逆流漂洗槽内下方均设有管道和阀门,正常生产时此阀门关闭,不排放废水。
- (4)项目采用管理副槽的形式对各类工艺槽槽液等进行了过滤回用,减少了污染物的产生并减少了用水量,有生产用水计量装置和车间排放口废水计量装置,总体符合要求。
- (5)废水末端治理由华中表处园电镀废水深度处理车间集中处理,减少处理成本,通过对电镀废水深度处理车间的规范建设,使排放的污染物得到有效治理,满足达标排放要求。
- (6)设备无跑、冒、滴、漏现象,有可靠的防范措施;各相邻槽子之间的空隙全 用焊接,槽子两侧全部含有斜挡板,上件处设有接水托盘,有利于节约资源并减少对 环境的污染。
- (7)车间作业面和污水排放管均采用防腐蚀材料制作,生产作业地面及污水系统具备完善的防腐防渗措施。

- (8)采用高频脉冲式整流器,转换效率高,输出稳定性高,节电显著,较一般整流器省电10%-25%。
- (9)项目钝化采用三价铬钝化,同时彻底摒弃了对环境有害的 Cr⁶⁺,实现了清洁生产。

3.5.2.2 资源能源利用指标

本项目由于采用先进的工艺和生产线,资源利用均达到原《电镀行业清洁生产评价指标体系》II级基准值,单位面积单次清洗取水量到I级。

3.5.2.3 产品指标

设置化验室、实验室对镀液成分进行定量检测,并做好记录;配备产品质量检测设备,并做好产品检测记录。

3.5.2.4 污染物产生指标

本项目产生的生产废水排入华中表处园电镀废水深度处理车间处理。经相应措施 治理后,本项目废水、废气、噪声均满足达标排放的要求,经预测,对环境的影响较 小。

从以上分析可知,本项目生产工艺技术先进、成熟、可靠,使用的能源为清洁能源电,采用了稳妥可靠的废水、废气处理措施,大大降低了污染物的排放量,符合清洁生产的指导思想,符合我国的环境保护政策和有关规定。

3.5.2.5 废物回收指标

项目产生的各类生产固废均可得到再利用,废物综合回收和利用率 100%。

3.5.2.6 环境管理要求

拟建项目位于集中的电镀加工园区,有专门负责环境管理的人员。华中表处园将按清洁生产要求健全环境管理制度,如:建立齐全的原始记录及统计数据,原材料质检制度和原材料消耗定额管理,对能耗水耗有考核,对产品合格率进行考核;按照国家编制的电镀行业的企业清洁生产审核指南的要求进行审核。满足清洁生产的要求,并将按照要求编制环境风险应急预案报主管部门备案。对照《电镀行业清洁生产评价指标体系》,本项目电镀生产线的清洁生产水平对比情况见表 3.5-1。

表 3.5-1 综合电镀清洁生产评价指标要求及对比

序号	一级指标	一级指 标权重	二级指标	单位	二级指 标权重	I 级基准值	Ⅱ级基准值	Ⅲ级基准值	企业基本情况	企业 级别	企业评 价指数
1		7,00	采用清洁生产工艺 [®]		0.15		1.民用产品采用低铬 [®] 頁 2.民用产品采用无氰镀 3.使用金属回收工艺		1.采用三价铬钝化 2.采用无氰镀锌 3.含镀液回收槽等金 属回收工艺	I 级	4.95
2	生产工艺及 装备指标	0.33	清洁生产过程控制		0.15	1.镀镍、锌溶液连续过滤; 2.及时补加和调整溶液; 3.定期去除溶液中的杂质	2.及时补加和调整溶液		满足1、2、3	I 级	4.95
3			电镀生产线要求		0.4	电镀生产线采用节能措施 ^② ,70%生产线实现自动化 或半自动化 [©]	世达② 500/ 生文45文	电镀生产线采用节能 措施 ^②	全自动生产线,电源 使用高频整流或可 控硅整流	I级	13.2
4			有节水设施		0.3	根据工艺选择逆流漂洗、 槽清洗等节水方式,有用z 回收设施	水计重装直,有仕线水	根据工艺选择逆流漂 洗、喷淋等,电镀无单 槽清洗等节水方式,有 用水计量装置	采用逆流漂洗,有生 产用水计量装置,有 在线水回收设施	I级	9.9
5		0.10	*单位产品每次清洗取水量 [®]	L/m ²	1	≤8	≤24	≤40	3.62	I 级	10
6	资源消耗指		锌利用率 [®]	%	0.8/n	≥82	≥80	≥75	82.65	I 级	4.8
7	标	0.18		0.8/n	≥90	≥80	≥75				
8		0.10	镍利用率 [®]	%	0.8/n	≥95	≥85	≥80	91.81	II级	4.8
9			装饰铬利用率 [®]	%	0.8/n	≥60	≥24	≥20	63.39	I级	4.8

序号	一级指标	一级指 标权重	二级指标	单位	二级指 标权重	I 级基准值	Ⅱ级基准值	Ⅲ级基准值	企业基本情况	企业 级别	企业评 价指数
10			硬铬利用率 [®]	%	0.8/n	≥90	≥80	≥70			
11			金利用率 [®]	%	0.8/n	≥98	≥95	≥90			
12			银利用率(含氰镀银)®	%	0.8/n	≥98	≥95	≥90			
13			电镀用水重复利用率	%	0.2	≥60	≥40	≥30	76.17	I级	3.6
14		0.16	*电镀废水处理率®	%	0.5		100	I级	8		
15	污染物产生 指标	0.16	*有减少重金属污染物污染剂施 [®]	顶防措	0.2	使用四项以上(含四项))减少镀液带出措施	至少使用三项减少镀 液带出措施	设镀液回收槽、在线 回收金属、设导流 板、淋洗等4项	II级	3.2
16		0.16	*危险废物污染预防措施		1 11 4	电镀污泥和废液在企业内 位转移须提供危险废物转		立回收重金属,交外单	危废交有资质单位 处置	I级	4.8
17	产品特征指标	0.07	产品合格率保障措施 [®]		1	有镀液成分和杂质定量检 测措施、有记录;产品质 量检测设备和产品检测记 录		昔施、有记录,有产品 如产品检测记录	镀液成分定量检测 措施、有记录;有产 品质量检测设备和 产品检测记录	II级	7
18	管理指标	0.16	*环境法律法规标准执行情况		1117	废水、废气、噪声等污染物排放符合国家和地方排放标准;主要污染物排放应达到国家和地方污染物排放总量控制指标			三废达标排放,总量 满足	I级	3.2
19			*产业政策执行情况		0.2	生产规模和工艺符合国家	和地方相关产业政策		符合	I级	3.2

序号	一级指标	一级指 标权重	二级指标	单位	二级指标权重	I 级基准值	Ⅱ级基准值	Ⅲ级基准值	企业基本情况	企业 级别	企业评 价指数
20			环境管理体系制度及清洁生 核情况	产审	0.1	按照GB/T24001建立并运 行环境管理体系,环境管 理程序文件及作业文件齐 备;按照国家和地方要求, 开展清洁生产审核	拥有健全的环境管理件;按照国家和地方§	要求,开展清洁生产审		Ι级	1.6
21			*危险化学品管理		0.10	符合《危险体	化学品安全管理条例》	相关要求	符合	I级	1.6
22			废水、废气处理设施运行管		0.1	置,建立治污设施运行台 账;对有害气体有良好净	混入电镀废水处理系统;建立治污设施运行 统;建立治污设施运行 台账,有自动加药装 置,出水口有pH自动 监测装置;对有害气体	日%,山水口行1/11日	处理和自建; 日为7/1	I级	1.6
23			*危险废物处理处置		0.1	危险废物	按GB18597等相关规划	三执行	符合	I级	1.6
24			能源计量器具配备情况		0.1	能源计量程	器具配备率符合GB171	67标准	符合	I级	1.6
25			*环境应急预案		0.1	编制系统的环	境应急预案并开展环场	竟应急演练	企业将编制环境应 急预案并开展环境 应急演练	I级	1.6

序号		一级指 标权重	二级指标	单位	二级指 标权重	I 级基准值	Ⅱ级基准值	Ⅲ级基准值	企业基本情况	企业 级别	企业评 价指数
											合计100

3.5.3 同类型企业清洁生产水平对比

为反映本项目清洁生产水平,本次评价将主要指标与同类型企业重庆红宇公司(设置碱性挂镀锌及锌镍生产线1条和酸性挂镀锌及锌镍生产线1条)和重庆吉锦公司(挂镀锌+锌镍生产线1条、滚镀锌生产线1条、挂镀装饰铬生产线1条)进行对比,详细如下:

序号	主要指标	指标	恒镁	欧航	重庆红宇	重庆吉锦
1	电镀面积	m^2	6万	8万	54.07 万	30万
2	单位产品每次清洗 取水量	L/m ²	2.72	3.62	2.36	2.7
3	锌利用率	%	82.16	82.65	82.32	82
4	镍利用率	%	91.54	91.81	91.03	92

表 3.5-2 与同类型企业清洁生产水平对比一览表

由表 3.5-2 中对比可知,恒镁生产规模较另外重庆红宇和重庆吉锦公司小,与欧航公司的生产规模相当,受生产规模所限,导致单位产品每次清洗取水量略高于重庆红宇和重庆吉锦,仍能够满足 I 级水平,重金属利用率高于另 2 家企业,说明恒镁公司达到国内清洁生产先进水平。

3.5.4 清洁生产小结

通过计算,Y_□=100≥85,且限定性指标全部满足Ⅱ级基准值要求及以上,根据电镀行业清洁生产企业等级评定方法,确定拟建项目电镀生产线的清洁生产水平等级为Ⅲ级(国内清洁生产先进水平)。

3.5.5 清洁生产建议

为了讲一步提高清洁生产水平,提出如下:

- (1) 企业管理的制度化、规范化, 使企业按照现代化标准管理。
- (2) 用、排水要设有计量装置,提倡节约用水。
- (3) 各部门用电、用气要装设计量表进行计量,以促进节能工作开展。
- (4) 环境管理各项指标与个人经济利益挂钩,建立互相制约机制,调动职工的主动性和自觉性。
- (5)建立清洁生产奖励制度,对研究开发,推广应用清洁生产技术,提出有利于 清洁生产建议的人员视贡献大小给予一定的奖励。

(6) 大力宣传清洁生产的意义,举办各种层次的清洁生产学习班、培训班,使全体员工转变观念,提高认识,积极支持、参与清洁生产。

4 环境现状调查与评价

4.1 自然环境现状

4.1.1 地理位置

荆州地处长江中游、湖北省中南部,位于沃野千里、美丽富饶的江汉平原腹地,素有"文化之邦、鱼米之乡"的美誉,是一座古老文化与现代文明交相辉映的滨江城市。地理位置为东经 111°15′~114°05′,北纬 29°26′~31°37′。全市国土面积 1.41 万平方公里,总人口 658 万,下辖荆州区、沙市区、江陵县、松滋市、公安县、石首市、监利县、洪湖市 8 个县市区和国家级荆州经济技术开发区。荆州先后被确定为国家历史文化名城、中国优秀旅游城市、国家园林城市、全国双拥模范城市,是全国优质农副产品生产基地和精细化工基地、国家级承接转移示范区、全国老工业基地调整改造规划区、全国大遗址保护示范区、国家重要的公路交通枢纽和长江重要港口城市。

2011年7月11日,经国务院批准,荆州经济开发区升级为国家级经济技术开发区,定名为荆州经济技术开发区。该区位于荆州市城区东端,西临沙市主城区、东接岑河农场及荆岳铁路规划线、北承荆州地方铁路货运站及豉湖渠、南至长江。下辖联合街办、沙市农场、长江盐卡港区等,辖区面积约209km²,人口18万。

4.1.2 地形地貌

荆州市位于扬子准地台中部,属新华夏系第沉降带晚近期构造带,处于中国地势第三级阶梯的西部边缘,是江汉平原的主体。全市地势略呈西高东低,由低山丘陵向岗地、平原逐渐过渡。全市海拔250米以上的低山493平方公里,占国土总面积的3.54%;海拔40~250米的丘陵岗地2147.66平方公里,占15.27%;海拔25~40米的平原面积11421.34平方公里,占81.19%。山丘分布于西部松滋市的庆贺寺、刘家场及西北部荆州区八岭山,地势最高点为松滋市的大岭山,海拔815.1米。岗地分布于荆州区的川店、马山、纪南和公安县的孟溪、郑公以及石首市的团山、高基庙一带。东部地势低洼,最低点在洪湖市新滩乡沙套湖,海拔仅18米。

4.1.3 气候气象

项目选址所在的荆州地区属于北亚热带内陆湿润季风气侯,夏热冬冷,四季分明,雨量充沛。据多年统计,历年平均气温 16.2℃,极端最高气温 38.6℃,极端最低-14.9℃。常年主导风向为北风,平均风速 2.3m/s,出现频率 17%,夏季主导风向为南风,出现频率为 20%;冬季主导风向为北风,出现频率为 20%;年静风频率为 18%,夏季静风频率为 19%,冬季静风频率 14%;年平均降雨量 1113mm,年最大降雨量 1500mm,小时最大降雨量 73mm,平均蒸发量 1312.1mm;年平均日照时数 1865h;年平均无霜期 256.7d,年均雾日数 38.2d;最大积雪厚度 300mm;年平均气压 1122.2mb;历年平均相对温度 80%,最冷月平均湿度 77%,最热月平均相对湿度 83%(7月)和 82%(8月)。

4.1.4 水系水文

荆州城区南有长江、北有长湖,是荆州市城区的两大过境水系。荆州市境内有豉湖渠、西干渠等两条主要河渠,均无天然源头。

(1) 长江水文

长江荆江中段南傍荆州市中心城区而过,上游来水由西入境,于沙市盐卡折向东南,形成曲率半径 7.1km 的弯道。根据多年水文统计资料,各年平均水位 34.02m,历史最高水位 45m;江面平均宽度 1950m,最大宽度 2880m,最小宽度 1035m;平均水深 10.5m,最深 42.2m;平均流速 1.48m/s,最大流速 4.33m/s;平均流量 14129m³/s,最大流量 71900m3/s,最小流量 2900m³/s;平均水温 17.83℃,最高 29.00℃,最低 3.70℃,平水期 (4-6 月,10-12 月) 平均水位 32.22m,平均流速 1.18m/s,平均流量 10200.00m³/s;丰水期(7-9 月)平均水位 36.28m,平均流速 1.69m/s;平均流量 24210.00m³/s;枯水期(1-3 月)平均水位 28.72m,平均流速 0.87m/s,平均流量 4130.00m³/s。

(2) 西干渠水文

西干渠是四湖(长湖、三湖、白露湖、荆州)防洪排涝工程的四大排水干渠之一。 西起沙市区雷家垱向东南在监利汪桥乡以东扬河口闸汇入总干渠,全长 91km。西干渠 沙市段止于砖桥,全长 15km,底宽 18m,边坡 1: 1.5,设计底高程 25.12~25.70m, 常年水位 26.98~26.78m;由于渠道上多处筑坝,已起不到防洪排涝作用,凡排入西干 渠的污水均在沙市豉湖路口进入豉湖渠。

(3) 豉湖渠(沙市段)水文

豉湖渠是四湖防洪排涝工程的主要排水支渠之一,建于1960~1961年。起于荆州市江津路、豉湖路交叉处,自西南向东北流至朱廓台,然后折向正东,经沙市区岑河、观音垱,在何家桥附近汇入总干渠,全长约22km。

豉湖渠沙市段流经三板桥、同心、连心、宿驾等村,止于锣场东港湖,全长 10km, 是荆州城区的主要排水渠道。豉湖渠干流由长港渠、西干渠、少量红光路泵站溢流管 排出的城市污水组成。

4.1.5 地质

项目选址区域大部分地区属第四条全新式统冲—洪积、湖积、冲积而成。1~1.25m 深一般为新近堆积土、填土、粉土、粉细砂、粉质粘土等,地耐力一般为 80~120KN/m² 左右,2.5~8m 深入一般为淤泥质土,有时夹有粘土、老粘土,20m 以下为老粘土、粉质粘土、粉砂、细砂、中砂、粗砂、卵石层等,地耐力一般为 120~650KN/m²,该地区地质条件较好。

根据国家地震强度区划图和湖北省抗震办文件, 地震基本烈度为 6 级。

4.1.6 土壤

荆州市土壤由近代河流冲积物和新生代第四纪粘土沉积物形成,以水稻土、潮土、黄棕壤为主体,土层深厚肥沃,适宜多种农作物生长发育。近年来,全市依法加强了土地资源的综合开发与利用,制止乱占滥用耕地,确定了基本农田保护区,实现了耕地总量的动态平衡。

荆州市土地总面积折合 140.93 万 ha,属于典型的人多地少的地区。据第一次农业普查资料显示,全市已利用的农业用地为 72.77 万 ha,占土地面积的 51.6%,在已利用的农业用地中,耕地占 82.3%,人均 1.41 亩,养殖水面占 8.0%,林地占 8.1%,园地占 1.6%。全市土壤由近代河流冲积物和新生代第四纪粘土沉积物形成,以水稻土、潮土、黄棕壤为主体,土层深厚肥沃,适宜多种农作物生长发育。近年来,全市依法加强了土地资源的综合开发与利用,制止乱占滥用耕地,确定了基本农田保护区,实现了耕地总量的动态平衡。

荆州市土壤由近代河流冲积物和新生代第四纪粘土沉积物形成,以水稻土、潮土、

黄棕壤为主体,土层深厚肥沃,适宜多种农作物生长发育。荆州市土地总面积折合140.93万 ha,属于典型的人多地少的地区。全市已利用的农业用地为72.77万 ha,占土地面积的51.6%,在已利用的农业用地中,耕地占82.3%,人均1.41亩,养殖水面占8.0%,林地占8.1%,园地占1.6%。

5.1.7.1 土壤类型调查

通过在国家土壤信息服务平台查询,对照《中国土壤分类与代码》 (GB/T17296-2009)可知项目占地范围内土壤类型有两种,分别为灰潮土和水稻土, 以水稻土为主,约占90%。

表 5-1. 项目土壤分类

代码	土纲	代码	亚纲	代码	土类	亚类
Н	半水成土	H1	淡水成土	H2	潮土	灰潮土
L	人为土	L1	人为水成土	L11	水稻土	潴育水稻土

5.1.7.2 土壤理化性质

(1) 灰潮土理化性质

①归属与分布灰潮砂土,属灰潮土亚类灰潮砂土土属。主要分布在湖北省的荆州、 襄樊、武汉、宜昌、黄冈、荆门等地(市)江河沿岸的河漫滩地。面积 172.9 万亩,其中 耕作 170.7 万亩。

②主要性状该土种母质为石灰性长江冲积物。剖面为 A11—Cu 型。土体厚 100cm 以上,质地均一为砂质壤土,含少量砾石,通体砂粒含量 81.4~93.6%,粒状结构为主,C 层稍紧实,其粘粒含量 12.6%,有明显的铁锈斑纹。土壤 pH7.7~8.2,呈碱性。阳离子交换量 6.3~12.5me/100g 土。据 31 个农化样分析结果统计:有机质含量 1.13%,全氮 0.070%,全磷 0.071%,全钾 1.75%,速效磷 4.5ppm,速效钾 76.0ppm;有效微量元素含量:铜 1.8ppm,硼 0.35ppm,锌 1.20ppm,钼 0.08ppm,锰 11.0ppm,铁 16.0ppm。

(2) 潴育水稻土理化性质

归属与分布青塥黄泥田,属潴育水稻土亚类马肝泥田土属。分布于湖北省中部黄土丘岗地带的冲垄和平畈,包括荆州、荆门、孝感、黄冈等地(市),地形较开阔平缓,海拔 50~200m。面积 21.6 万亩。2.主要性状该土种成土母质为黄土状物质。剖面为 Aa ——Ap—W—C型,厚 1m 以上。其灌溉条件好,但排水设施欠完善,长期肥稻稻连作,致使土体中部滞水形成青泥层,理化性状变劣。土壤呈中性至酸性,pH6.3—7.2,上低

下高;阳离子交换量平均为17.71me/100g 土,上高下低。Aa 层疏松,有少量鳝血斑块或根锈条纹,有机质含量较高,2.50—3.80%。Ap 层较紧实,粘粒淀积明显,部分轻度深灰色潜育斑并有轻度亚铁反应。Pg 层出现在土体20—58cm,平均厚33cm,暗棕灰色,块状结构,稍软,强亚铁反应。W 层呈黄棕色,棱块状结构,有铁锰斑块、胶膜或结核体。根据农化样统计结果(n=31):有机质含量2.6%,全氮0.154%,全磷0.020%,全钾1.53%,速效磷4.3ppm,速效钾111ppm。

4.1.7 生物

荆州市国标三级以上优质稻占水稻总面积的 95.6%, 优质杂交棉和双低油菜全面普及。各农作物面积分别为:水稻 600 万亩、小麦 82.9 万亩、油菜 383 万亩、柑橘 22 万亩、棉花 177 万亩、蔬菜 9.318 万亩、玉米 40 万亩、水果 47.295 万亩、黄豆 27.17 万亩。

评价范围内植被部分为农田植被,主要的农作物为油菜、小麦、玉米、花生和各种蔬菜等。

评价范围内的林地面积很小,基本上没有天然林,在田间地头及荒地等处有少量的灌草丛分布。通过实地调查,评价范围内主要为农田植被。

评价区域内灌草丛主要有白茅灌草丛、野艾蒿灌草丛和狗牙草灌草丛。白茅灌草丛在评价范围内分布较广,主要分布在沟渠、塘堰等近水附近。该灌草丛呈片状分布,高度范围为 0.40~0.80m,由白茅组成单优势群落,其伴生植物有狗尾草、野胡萝卜、艾蒿等;野艾蒿灌草丛和狗牙草灌草丛是评价范围内分布面积最广的覆地草本植被之一。呈片状或带状分布,平均高度范围为 0.10~0.25m,由野艾蒿、狗牙根组成优势群落,其伴生植物有蒲公英、黄花蒿、荩草等。

评价范围内通过现场调查,未发现国家重点保护植物,没有古树名木。

根据走访当地居民,项目周边区域野生兽类数量已经很少,只有适应农田生存的动物,刺猬、黄鼠狼、野兔、野猫、蝙蝠、老鼠、田鼠,全区均有分布。爬行类主要有蛇、龟、鳖、壁虎、青蛙、蟾蜍等。其中蛇类较多,常见有银环蛇、蝮蛇、乌梢蛇、竹叶青、水蛇等。沿线鸟类主要有野鸡、斑鸠、鸬鹚、秧鸡、燕、白鹤等。

4.1.8 矿产

荆州市已发现矿产 35 种,其中探明有一定工业储量的 13 种,已开采利用的 20 种。主要能源矿种有石油、煤炭; 化学矿产有岩盐、囱水、芒硝、硫铁矿、重晶石; 建材矿种有大理石、花岗石、石灰石、粘土、河道砂、卵石; 冶金辅助材料有白云岩、优质硅石、耐火粘土; 新型矿种有膨润土。此外还有砂金、脉金。

4.2 区域环境质量现状调查与评价

4.2.1 环境空气质量现状

4.2.1.1 区域环境空气质量现状

2018 年荆州市中心城区环境空气质量优良天数为 273 天,优良天数达标率为 76.9%,较 2017 年上升 1.3 个百分点,较 2015 年上升 16.9 个百分点,空气质量优良天数 达标率已连续 5 年上升。其中:优 35 天、良 238 天、轻度污染 67 天、中度污染 10 天、重度污染 5 天、无严重污染天数;重度及以上污染天数较 2017 年减少 4 天,较 2015 年减少 10 天。环境空气综合质量指数为 5.16,主要污染物为 PM2.5。

全年 82 个污染日中,首要污染物为细颗粒物($PM_{2.5}$)的有 46 天,占 56.1%; 首 要污染物为臭氧(O_3)的有 30 天,占 36.6%; 首要污染物为可吸入颗粒物(PM_{10})有 5 天,占 6.1%; 首要污染物为二氧化氮(NO_2)的有 1 天,占 1.2%。

荆州市中心城区空气 6 项污染物中,可吸入颗粒物(PM₁₀)年平均浓度值为 86 微克/立方米,比上年下降 6.5%,超过国家二级标准 0.23 倍;细颗粒物(PM_{2.5})年平均浓度值为 49 微克/立方米,比上年下降 12.5%,超过国家二级标准 0.40 倍;二氧化硫(SO₂)、二氧化氮(NO₂)、一氧化碳(CO)24 小时平均第 95 百分位、臭氧(O₃)日最大 8 小时滑动平均第 90 百分位浓度值分别为 15 微克/立方米、34 微克/立方米、1.8毫克/立方米、157 微克/立方米,较上年变幅分别为-16.7%、-5.6%、5.9%、12.1%,均达到国家二级标准。

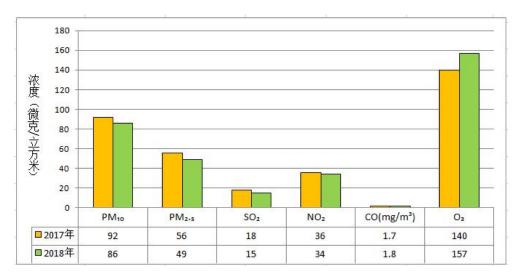


图 4.2-1 2018 年荆州市中心城区 6 项污染物与 2017 年对比图

从月际变化看,臭氧浓度 4-10 月份较高,超标主要发生在春末、夏季初秋的午后至傍晚时段,冬季最低;其它 5 项污染物全年呈"U"型走势,总体表现为冬季最高、春秋次之、夏季最低的特征。夏季臭氧、冬季细颗粒物季节性污染问题突出。

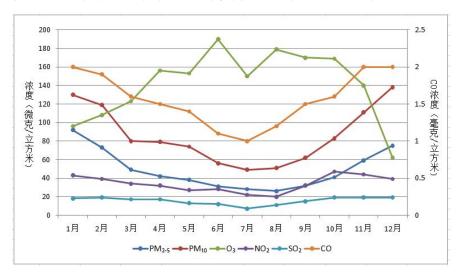


图 4.2-2 2018 年荆州市中心城区 6 项污染物月均浓度变化图

2014~2018年荆州市中心城区可吸入颗粒物、细颗粒物、二氧化硫年均浓度连续5年呈下降趋势,一氧化碳、二氧化氮、臭氧年均浓度总体保持稳定。

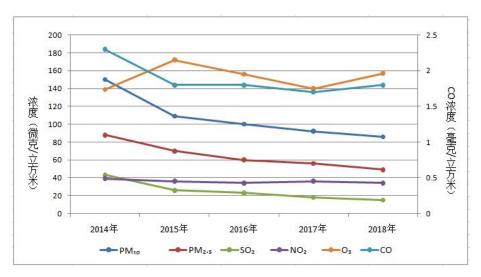


图 4.2-3 近 5 年荆州市中心城区 6 项污染物年均浓度变化趋势图

根据上述资料判断,荆州市中心城区为**环境空气质量不达标区**。主要超标因子为 PM₁₀和 PM_{2.5},超标原因是城市基建、扬尘等因素综合导致。

荆州市为切实做好大气污染防治工作,改善全市环境空气质量,保障人民群众身体健康,已制定《荆州市城市环境空气质量达标规划(2013—2022 年)、《荆州市大气污染防治行动计划》、《荆州市大气污染防治"十三五"行动计划》等,主要从推进产业结构调整、优化能源结构、加大工业污染治理力度、深化面源污染治理、深化移动源污染防治、加强监管能力建设等方面采取各种有效措施开展大气污染防治工作,逐步改善环境空气质量。《荆州市城市环境空气质量达标规划(2013—2022 年)》中主要任务措施如下:

- ①调整经济结构,尽快进入工业化后期,使第二产业在国民经济中的比重开始下降,提升第三产业比重。培育壮大物流、贸易、金融等生产性服务业,实现贸易、现代物流与高端制造功能的整体提升。
- ②调整工业结构和布局,削减钢铁、水泥等能源消费量大、大气污染物排放量大的行业产能,重点发展产品附加值高、单位 GDP 排放强度低的行业;主城区扰民工业企业基本外迁,坚守生态控制线,关闭或者迁出部分重污染企业,逐步实现制造业向区外转移。
- ③调整能源结构,建设清洁节能型城市,进一步提升清洁能源消费比例,进一步减少煤炭分散燃烧的比例,煤炭消费总量明显下降。
 - ④大力发展循环经济,强化清洁生产,逐步实现大气污染控制从末端治理到源头

控制过渡,逐步步入工业绿色发展进程;打造部分排放控制水平在全国领先的标杆型企业。

- ⑤进一步提升车辆环保管理水平和城市交通管理水平,大力提高公共交通出行比例,确立公共交通的主导地位;按照国家要求实施更严格的机动车排放标准,适时开展机动车总量控制。
- ⑥通过精细化管理提高扬尘管理水平,大力减少城市建设的开复工面积,进一步减少扬尘排放。
- ⑦分阶段进行空气质量达标情况考核,开展跟踪评价,查找不足,有针对性地提 出改进措施,逐步实现城市空气质量达标。

4.2.1.2 评价范围内环境空气质量调查

评价范围内环境空气质量调查引用《湖北金茂环保科技有限公司华中表面处理循环经济产业园项目环境影响报告书》中监测数据。(氯化氢超标,需更改其引用报告)监测时间为2018年1月13日~1月19日。本项目位于华中表处园内,监测数据在三年之内,引用该数据有效合理。

(1) 监测点位

监测点位及监测因子详见表 4.2-1:

点位名称 监测因子 功能设置 相对厂界方位与距离 1#林家台 上风向对照点 NE 2000m 2#左闸 侧风向敏感点 N 760m 侧风向敏感点 3#麻林 E 530m HCl, NO₂, SO₂, PM₁₀, PM2.5 4#赵连塘 下风向敏感点 SW 260m 5#老经庵 下风向敏感点 S 990m 6#汪家岭 下风向敏感点 SSW 2250m

表 4.2-1 监测点位及与本项目的位置关系一览表

(2) 采样、监测分析方法和监测频次

监测因子及采样、分析方法见表 4.2-2。

表 4.2-2 环境空气质量监测因子及其分析方法

监测	取值	分托卡法	检出限	- 计标准
因子	时段	分析力法	心山阪	月

PM_{10}	日平均	重量法	0.010 mg/m^3	НЈ618-2011
PM _{2.5}	日平均	重量法	0.010 mg/ m ³	НЈ618-2011
50	小时值	□ 甲醛吸收副玫瑰苯胺分 0.004 mg/ m		111492 2000
SO_2	日均值	光光度法	0.007 mg/ m ³	HJ482-2009
NO	小时值	盐酸萘乙二胺分光光度	0.005 mg/ m ³	111470 2000
NO_2	日均值	法	0.003 mg/ m ³	HJ479-2009
HCl	小时值	离子色谱法	0.02 mg/ m ³	《空气和废气监测分析方法》

监测时间为 2018 年 1 月 13 日~1 月 19 日,连续监测 7 天。其中小时值每天监测 4 次 (2:00、8:00、14:00、20:00),日均值每天一次。监测期间同步观测风向、风速、气温、气压、总云量、低云量等常规气象要素。

(4) 评价方法

采用最大浓度之占相应标准浓度限值的百分比法进行大气环境质量评价。

Pi=Ci/C0i

(5) 环境空气质量现状结果与评价

评价区环境空气质量现状监测统计及评价结果见表 4.2-3。

表 4.2-3 环境空气质量现状监测统计及评价结果

上			日均值			小时值	
点位	监测项目	浓度范围	标准限值	最大浓度占	浓度范围	标准限值	最大浓度占
1 <u>1</u> 1/1		(mg/m^3)	(mg/m^3)	标率 (%)	(mg/m^3)	(mg/m^3)	标率 (%)
	PM ₁₀	0.065~0.072	0.15	48			
	PM _{2.5}	0.017~0.025	0.075	33.3			
1#	SO_2	0.018~0.02	0.15	13.3	0.029~0.034	0.5	6.8
	NO ₂	0.017~0.018	0.08	25.5	0.034~0.036	0.2	18
	HC1				0.02~0.025	0.05	50
	PM_{10}	0.068~0.074	0.15	49.3			
	PM _{2.5}	0.017~0.025	0.075	33.3			
2#	SO_2	0.018~0.02	0.15	13.3	0.029~0.034	0.5	6.8
	NO_2	0.019~0.019	0.08	23.8	0.034~0.04	0.2	20
	HCl				0.02~0.024	0.05	48
	PM_{10}	$0.067 \sim 0.07$	0.15	46.7			
3#	PM _{2.5}	0.017~0.025	0.075	33.3			
3#	SO_2	0.018~0.02	0.15	13.3	0.029~0.033	0.5	6.6
	NO ₂	0.019~0.02	0.08	25	0.037~0.043	0.2	21.5

	HCl				0.019~0.023	0.02	46
	PM_{10}	0.068~0.07	0.15	46.7			
	PM _{2.5}	0.017~0.025	0.075	33.3			
4#	SO ₂	0.018~0.02	0.15	13.3	0.030~0.033	0.5	6.6
	NO_2	0.019~0.02	0.08	25	0.038~0.043	0.2	21.5
	HC1	0.013~0.015	0.015	100	0.02~0.025	0.05	50
	PM_{10}	0.07~0.077	0.15	51.3			
	PM _{2.5}	0.017~0.021	0.075	28			
5#	SO_2	0.018~0.02	0.15	13.3	0.028~0.033	0.5	6.6
	NO ₂	0.02~0.02	0.08	25	0.039~0.043	0.2	21.5
	HC1				0.02~0.023	0.05	46
	PM_{10}	0.069~0.073	0.15	48.7			
	$PM_{2.5}$	0.017~0.025	0.075	33.3			
6#	SO_2	0.018~0.02	0.15	13.3	0.029~0.034	0.5	6.8
	NO ₂	0.019~0.02	0.08	25	0.039~0.043	0.2	21.5
	HC1				0.02~0.025	0.05	50

由上表评价结果表明,评价区内各监测点位各监测因子均满足《环境空气质量标准》(GB3095-2012)以及《环境影响评价技术导则——大气环境》(HJ2.2-2018)表 D.1 的要求。

4.2.2 地表水环境质量现状监测与评价

4.2.2.1 地表水环境质量现状调查

本项目生产废水、生活污水处理均依托华中表处园内电镀废水深度处理车间,最终纳污水体为长江。为了解项目纳污水体的地表水环境质量状况,采用《湖北金茂环保科技有限公司华中表面处理循环经济产业园项目环境影响报告书》中现状监测结果,监测时间为2018年1月8日~1月10日,监测数据具有有效性。

(1) 监测断面与监测因子

表 4.2-4 地表水体监测点位情况

类别	监测断面	监测点位	设置说明	监测项目
华中表处	1#	中环水业排污口上游500m	对照断面	总铬、六价铬、总镍、总
日本中次处	2#	中环水业排污口下游500m	控制断面	镉、总银、总铜、总铁、
四外厅	3#	中环水业排污口下游1000m	削减断面	总铝、氟化物、总氰化物
园区规划	1#	中环水业排污口上游500m	对照断面	COD、BOD ₅ 、NH ₃ -N、
四区规划 环评	2#	中环水业排污口上游500m	控制断面	
がけ	3#	中环水业排污口下游1000m	削减断面] 心灰\\ 心瞬、口冲尖

(2) 监测时间与分析方法

水样采集按《地表水和污水监测技术规范》(HJ/T91-2002)要求进行,水样的保存和分析按《水和废水监测分析方法》(第四版)和国家有关标准执行。

华中表处园环评监测时间为 2018 年 1 月 8 日~1 月 10 日;军民融合暨光通讯电子信息产业园 A 区规划环评监测时间为 2018 年 1 月 10 日~1 月 12 日。

(3) 现状监测结果及评价结果

水环境现状监测结果见表。

本次评价采用单项水质指数评价法,其公式为:

$$S_{i,j} = \frac{C_{i,j}}{C_{si}}$$

式中: Si,j-第 i 种污染物在第 j 点的标准指数;

Ci,j一第 i 种污染物在监测点 j 的浓度, mg/L;

Csi-i污染物的评价标准值。

pH 的标准指数计算公式为:

$$S_{pH,j} = (7.0 - pH_j)/(7.0 - pH_{sd})$$
 pHj \leq 7.0

$$S_{pH,j} = (pH_j - 7.0)/(pH_{su} - 7.0)$$
 pHj>7.0

式中: SpH,i—pH 的标准指数;

pHi—pH 的实测值;

pHsd—地表水质标准中规定的 pH 值下限;

pHsu—地表水质标准中规定的 pH 值上限。

溶解氧标准指数计算公式为:

$$S_{DO,j} = \frac{\left|DO_{f} - DO_{j}\right|}{DO_{f} - DO_{s}}$$
 DOj\ge DOs

$$S_{DO,j} = 10 - 9 \frac{DO_j}{DO_g}$$
 DOj

式中: SDO,j一污染物在第 j 点的溶解氧标准指数;

DOf-某水温、气压条件下的饱和溶解氧浓度, mg/L;

其常用计算公式为: DOf=468/(31.6+T), T为水温, ℃;

DOs-溶解氧的水质评价标准限值, mg/L。

水质参数>1,表明该点水质参数超过了规定的水质标准,反之,则满足评价标准。

表 4.2-5 水环境现状监测结果 单位: mg/L, pH 无量纲

类别	采样时间	采样点	总铬	六价铬	镍	镉	银	铜	铁	铝	氟化物	氰化物
		1#	ND(0.004)	ND(0.004)	ND(0.007)	ND(0.001)	ND(0.03)	ND(0.006)	0.02	ND(0.009)	0.66	ND(0.004)
	2018.1.8	2#	ND(0.004)	ND(0.004)	ND(0.007)	ND(0.001)	ND(0.03)	ND(0.006)	0.01	ND(0.009)	0.75	ND(0.004)
		3#	ND(0.004)	ND(0.004)	ND(0.007)	ND(0.001)	ND(0.03)	ND(0.006)	ND (0.01)	ND(0.009)	0.55	ND(0.004)
		1#	ND(0.004)	ND(0.004)	ND(0.007)	ND(0.001)	ND(0.03)	ND(0.006)	0.01	ND(0.009)	0.64	ND(0.004)
华中表处园 环评	2018.1.9	2#	ND(0.004)	ND(0.004)	ND(0.007)	ND(0.001)	ND(0.03)	ND(0.006)	0.01	ND(0.009)	0.72	ND(0.004)
27/ 7/		3#	ND(0.004)	ND(0.004)	ND(0.007)	ND(0.001)	ND(0.03)	ND(0.006)	0.01	ND(0.009)	0.52	ND(0.004)
		1#	ND(0.004)	ND(0.004)	ND(0.007)	ND(0.001)	ND(0.03)	ND(0.006)	0.01	ND(0.009)	0.62	ND(0.004)
	2018.1.10	2#	ND(0.004)	ND(0.004)	ND(0.007)	ND(0.001)	ND(0.03)	ND(0.006)	0.02	ND(0.009)	0.69	ND(0.004)
		3#	ND(0.004)	ND(0.004)	ND(0.007)	ND(0.001)	ND(0.03)	ND(0.006)	0.01	ND(0.009)	0.50	ND(0.004)
	采样时间	采样点	рН	COD	BOD ₅	氨	 氮	总氮	总磷	石油类		
加利亚沃		1#	7.75-7.83	17	2.2-2.3	0.795-	0.785	0.91-0.95	0.17-0.18	0.01		
规划环评	2018.1.10~12	2#	7.73-7.82	16-19	2.2-2.3	0.752-	0.767	0.85-0.92	0.16-0.17	0.01		
		3#	7.74-7.68	17-18	2.1-2.3	0.755-	0.761	0.89-0.92	0.13-0.15	0.01		

表 4.2-6 地表水环境质量现状监测评价结果一览表

类别	采样时间	采样点					最大村	示准指数				
关	木件时间 	木件品	总铬	六价铬	镍	镉	银	铜	铁	铝	氟化物	氰化物
		1#	/	/	/	/	/	/	0.07	/	0.66	/
	2018.1.8	2#	/	/	/	/	/	/	0.03	/	0.75	/
		3#	/	/	/	/	/	/	/	/	0.55	/
华中表处园		1#	/	/	/	/	/	/	0.03	/	0.64	/
本下 校是國	2018.1.9	2#	/	/	/	/	/	/	0.03	/	0.72	/
小片		3#	/	/	/	/	/	/	0.03	/	0.52	/
		1#	/	/	/	/	/	/	0.03	/	0.62	/
	2018.1.10	2#	/	/	/	/	/	/	0.07	/	0.69	/
		3#	/	/	/	/	/	/	0.03	/	0.50	/
类别	采样时间	采样点	pН	COD	BOD5	氨氮	总磷	总氮	石油类			
规划环评	2018.1.10~12	1#	0.42	0.85	0.575	0.785	0.9	0.95	0.25			
		2#	0.41	0.95	0.575	0.767	0.85	0.92	0.25			
		3#	0.34	0.9	0.575	0.761	0.75	0.92	0.25			

由地表水监测结果可知,各项监测因子均能满足《地表水环境质量标准》 (GB3838-2002) III类水体要求。

4.2.2.2 长江观音寺断面水环境质量现状分析

本项目废水最终通过中环水业排污口外排长江,该排污口距离长江观音寺断面约 5.5km,观音寺断面位于排污口下游。根据荆州市地表水环境质量月报,2017年~2019 年长江观音寺控制断面水质状况见表 4.2-7。

从 2017 年到 2019 年,长江观音寺断面水质为 II 类的月份比III类的月份逐渐增加,水质有所改善。

月份	1月	2 月	3 月	4 月	5 月	6月	7月	8月	9月	10 月	11月	12 月
2017年	III	II	II									
2018年	II	III	II	II	II	III						
2019年	II	II	II	II	III	II	II	III	II			

表 4.2-7 近三年长江观音寺断面水质状况

4.2.3 声环境现状监测与评价

本次评价引用武汉净澜检测有限公司对湖北欧航金属表面处理有限公司汽车零部件表面处理生产线项目的监测结果,武汉净澜检测有限公司于 2019 年 11 月 19 日至 20 日连续 2 天对湖北欧航金属表面处理有限公司厂界噪声进行了现状监测,共设置 4 个噪声监测点,分别位于东、南、西、北厂界各布 1 个监测点,连续监测 2 天,每天昼、夜间各 1 次。

监测统计结果见表 4.2-9。

		监测结果 L _{eq} 〔dB(A)〕						
监测点位	主要声源	2019年1	1月19日	2019年11月20日				
		昼间	夜间	昼间	夜间			
项目东面厂界外	环境噪声	49.9	43.3	50.2	43.3			
1m 处	217元(水)	77.7	75.5	30.2	45.5			
项目南面厂界外	 环境噪声	51.3	44.5	51.8	44.6			
1m 处		31.3	44.5	31.6	44.0			

表 4.2-8 项目噪声现状监测结果统计一览表 (单位: dB(A))

项目西面厂界外 1m 处	环境噪声	48.0	40.2	47.5	39.7
项目北面厂界外 1m 处	环境噪声	49.4	40.3	48.1	40.4

由表中监测结果可以看出,项目厂界四周的噪声均能达到《声环境质量标准》 (GB3096-2008)中3类标准,项目所在区域声环境质量现状满足环境功能区划要求。

4.2.4 地下水环境质量现状调查及评价

本项目位于华中表处园内,本次地下水环境质量调查引用《湖北金茂环保科技有限公司华中表面处理循环经济产业园项目环境影响报告书》监测数据。

4.2.4.1 监测点位及监测因子

项目所在区域的地下水环境质量执行《地下水质量标准》 (GB/T 14848-2017) 中的III类标准,项目所在区域地下水流向基本与地表水相同。

地下水监测点位设置见表 4.2-10。

相对厂界方位与距离 编号 点位名称 点位功能 NE2000m 林家台 场地上游 1# N760m 2# 左闸 场地地下水流向侧向 3# 麻林 场地地下水流向侧向 E530m 赵连塘 场地下游 SW260m 4# SSW2250m 5# 汪家岭 场地下游

表 4.2-9 地下水监测点位说明

4.2.4.2 监测因子及分析方法

地下水监测因子及分析方法见表 4.2-11。

监测因子 方法来源 分析方法 检出限 玻璃电极法 GB/T6920-86 рН 0.01 总硬度 EDTA 滴定法 0.05mmol/L GB/T7477-1987 溶解性总固体 生活饮用水标准检验方法 GB/T 5750.4-2006 1mg/L 高锰酸盐指数 高锰酸钾氧化法 0.5mg/L GB11892-89 氨氮 纳氏试剂分光光度法 0.025mg/L HJ535-2009 硝酸盐 分光光度法 0.08 mg/L HJ/T346---2007 紫外分光光度法 亚硝酸盐 0.003 mg/L GB/T749—87

表 4.2-10 地下水监测分析方法一览表

硫酸盐	离子色谱法	0.018mg/L	HJ/T84-2016
氯化物	硝酸银滴定法	10mg/L	GB/T11896-1989
汞	原子荧光法	0.00004mg/L	HJ694-2014
六价铬	二苯碳酰二肼分光光度法	0.004mg/L	GB7467-1987
铅	原子吸收分光光度法	0.01mg/L	GB7475-1987
镉	原子吸收分光光度法	0.001mg/L	GB7475-1987
铜	电感耦合等离子体发射光谱法	0.006mg/L	HJ 776-2015
砷	原子荧光法	0.0003mg/L	HJ694-2014
镍	电感耦合等离子体发射光谱法	0.007mg/L	НЈ 776-2015
锌	电感耦合等离子体发射光谱法	0.009mg/L	HJ 776-2015

4.2.4.3 监测结果

监测结果见表 4.2-12。

表 4.2-11 地下水监测结果一览表 单位: mg/L, pH 无量纲

监测点位	рН	氨氮	高锰酸盐指数	总硬度	溶解性总固体
1#林家台	7.76	0.188	2.7	395	509
2#左闸	7.64	0.158	1.2	374	503
3#麻林	7.54	0.152	0.5	352	476
4#赵连塘	7.72	0.176	1.1	373	482
5#汪家岭	7.48	0.143	1.3	391	477
标准限值	6.5~8.5	≤0.5	≤3.0	≤450	≤1000
监测点位	硝酸盐	亚硝酸盐	氯化物	硫酸盐	六价铬
1#林家台	0.18	0.016	35.2	73.8	ND (0.004)
2#左闸	0.24	ND(0.003)	11.5	10.2	ND (0.004)
3#麻林	0.25	ND(0.003)	30.4	54.5	ND (0.004)
4#赵连塘	0.22	ND(0.003)	10.5	11.0	ND (0.004)
5#汪家岭	0.21	ND(0.003)	10.9	29.2	ND (0.004)
标准限值	≤20	≤1	≤250	≤250	≤20
监测点位	镉	铅	砷	铜	锌
1#林家台	ND (0.001)	ND (0.01)	3.5×10 ⁻³	ND(0.006)	ND(0.004)
2#左闸	ND (0.001)	ND (0.01)	3.1×10 ⁻³	ND(0.006)	ND(0.004)
3#麻林	ND (0.001)	ND (0.01)	4.0×10 ⁻³	ND(0.006)	ND(0.004)
4#赵连塘	ND (0.001)	ND (0.01)	3.7×10 ⁻³	ND(0.006)	ND(0.004)
5#汪家岭	ND (0.001)	ND (0.01)	3.2×10 ⁻³	ND(0.006)	ND(0.004)
标准限值	≤0.005	≤0.01	≤0.01	≤1.0	≤1.0

监测点位	镍	汞	钴	锰	
1#林家台	ND(0.007)	ND (0.00004)	ND(0.01)	0.010	
2#左闸	ND(0.007)	ND (0.00004)	ND(0.01)	0.009	
3#麻林	ND(0.007)	0.00018	ND(0.01)	0.028	
4#赵连塘	ND(0.007)	ND (0.00004)	ND(0.01)	0.027	
5#汪家岭	ND(0.007)	ND (0.00004)	ND(0.01)	0.012	
标准限值	≤0.02	≤0.001	≤0.05	≤0.1	

地下水水质评价结果见表 4.2-13,由于六价铬、镉、铅、铜、锌、镍、汞、钴均 未检出,不再予以评价。

监测点位	рН	氨氮	高锰酸盐指数	总硬度	溶解性总固体	 硝酸盐
1#	0.49	0.38	0.90	0.88	0.51	0.009
2#	0.57	0.08	0.40	0.83	0.50	0.012
3#	0.64	0.30	0.17	0.78	0.48	0.013
4#	0.52	0.35	0.37	0.83	0.48	0.011
5#	0.68	0.29	0.43	0.87	0.48	0.011
监测点位	亚硝酸盐	氯化物	硫酸盐	砷	锰	
1#	0.016	0.14	0.30	0.35	0.1	
2#	ND	0.046	0.041	0.31	0.09	
3#	ND	0.12	0.22	0.40	0.28	
4#	ND	0.042	0.044	0.37	0.27	
5#	ND	0.044	0.12	0.32	0.12	

表 4.2-12 地下水评价结果一览表

据表可知地下水采样点各监测指标均能达到《地下水质量标准》(GB14848-2017) III 类标准要求。

4.2.5 土壤环境质量现状调查及评价

本次评价引用委托武汉净澜检测有限公司对湖北欧航金属表面处理有限公司汽车零部件表面处理生产线项目的监测结果(3个柱状样点,1个表层样,其中柱状样点位于华中表处园内,表层样点位于华中表处园外),同时引用原华中表处园环评中的土壤监测结果(2个表层样,其中一个表层样位于华中表处园内,一个表层样位于华中表处园外)。

(1) 监测点位、监测项目、监测时间

本项目土壤监测包括厂区内3个柱状样和1个表层样(引用华中表处园监测点),厂区外2个表层样(其中1个引用华中表处园监测点)。本次监测时间为2019年11月19日,华中表处园土壤监测时间为2018年1月8日,监测数据在三年之内,且华中表处园尚在建设中,区域内没有新增污染源,引用数据有效。

监测点位	采样深度	经纬度	监测项目	监测频 次
厂区内 1#	0-0.2m 0.2-0.5m 0.5-1.5m	30° 19′ 33.93″ N 112° 20′ 40.57″ E	砷、镉、铬(六价)、铜、铅、汞、镍、四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、灰-1,2-	
厂区内 2#	0-0.2m 0.2-0.5m 0.5-1.5m	30° 19′ 23.51″ N 112° 20′ 46.22″ E	二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2-四氯乙烷、1,1,1-三氯乙烷、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、	监测
厂区内 3#	0-0.2m 0.2-0.5m 0.5-1.5m	30° 19′ 20.73″ N 112° 21′ 07.68″ E	1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯、硝基苯、苯胺、	1次
厂区外 50m 4#	0-0.2m	30° 19′ 20.46″ N 112° 21′ 10.01″ E	2-氯酚、苯并[a]蒽、苯并[a]芘、苯 并[b]荧蒽、苯并[k]荧蒽、菌、二 苯并并[a,h]蒽、茚并[1,2,3-cd]芘、 萘、钴	
厂区内 5#(引用)	0-0.2m	30° 19′ 27.14″ N 112° 20′ 55.15″ E	all 玉 钩 絙 机 砷 铜	监测 1
厂区外 赵连塘 6# (引用)	0-0.2m	30° 19′ 17.23″ N 112° 20′ 36.90″ E	pH、汞、铬、镉、铅、砷、铜、镍、锌	次

表 4.2-13 土壤监测信息表

(2) 监测结果

土壤监测结果见表 4.2-15:

表 4.2-14 土壤监测结果一览表

						监测结	果							
监测 项目	土壤 T1# (0~0.2m)	土壤 T2# (0.2~0.5m)	土壤 T3# (0.5~1.5m)	土壤 T4# (0~0.2m)	土壤 T5# (0.2~0.5m)	土壤 T6# (0.5~1.5m)	土壤 T7# (0~0.2m)	土壤 T8# (0.2~0.5m)	土壤 T9# (0.5~1.5m)	土壤 T10# (0~0.2m)	土壤 5# (0~0.2m)	土壤 6# (0~0.2m)	筛选值/ 管制值	达标 情况
砷 (mg/kg)	8.54	7.63	6.89	4.09	6.61	9.29	5.55	16.7	7.24	9.26	7.27	6.43	60/140	达标
汞 (mg/kg)	0.063	0.092	0.050	0.056	0.066	0.069	0.082	0.077	0.087	0.091	0.025	ND (0.002)	38/82	达标
镉(mg/kg)	0.26	0.18	0.19	0.72	1.60	0.23	0.38	0.29	0.37	0.42	0.08	0.43	65/172	达标
铅 (mg/kg)	10.4	8.7	10.4	13.0	13.9	9.9	11.4	10.8	11.1	14.4	16.3	15.0	800/ 2500	达标
铜 (mg/kg)	44.3	32.2	34.9	25.0	36.6	43.9	32.1	46.5	52.3	39.5	37.3	30.4	18000/ 36000	达标
镍(mg/kg)	45	39	34	31	35	39	33	53	58	38	26.6	24.3	900/ 2000	达标
六价铬 (mg/kg)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	42.6	41.3	5.7/78	达到 管制 值
锌 (mg/kg)											47.1	42.4		
四氯化碳 (mg/kg)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)			2.8/36	达标
氯仿 (mg/kg)	ND (0.0011)	ND (0.0011)	ND (0.0011)	ND (0.0011)	ND (0.0011)	ND (0.0011)	ND (0.0011)	ND (0.0011)	ND (0.0011)	ND (0.0011)			0.9/10	达标
二氯甲烷 (mg/kg)	ND (0.0015)	ND (0.0015)	ND (0.0015)	ND (0.0015)	ND (0.0015)	ND (0.0015)	ND (0.0015)	ND (0.0015)	ND (0.0015)	ND (0.0015)			616/200	达标
1,1-二氯乙 烷(mg/kg)	ND (0.0012)	ND (0.0012)	ND (0.0012)	ND (0.0012)	ND (0.0012)	ND (0.0012)	ND (0.0012)	ND (0.0012)	ND (0.0012)	ND (0.0012)			9/100	达标
1,2-二氯乙 烷(mg/kg	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)			5/21	达标
1,1-二氯乙 烯(mg/kg)	ND (0.0010)	ND (0.0010)	ND (0.0010)	ND (0.0010)	ND (0.0010)	ND (0.0010)	ND (0.0010)	ND (0.0010)	ND (0.0010)	ND (0.0010)			66/200	达标
顺-1,2-二氯 乙烯 (mg/kg)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0013)			596/200	达标
反-1,2-二氯	ND (0.0014)	ND (0.0014)	ND (0.0014)	ND (0.0014)	ND (0.0014)	ND (0.0014)	ND (0.0014)	ND (0.0014)	ND (0.0014)	ND (0.0014)			54/163	达标

	监测结果													
监测 项目	土壤 T1# (0~0.2m)	土壤 T2# (0.2~0.5m)	土壤 T3# (0.5~1.5m)	土壤 T4# (0~0.2m)	土壤 T5# (0.2~0.5m)	土壤 T6# (0.5~1.5m)	土壤 T7# (0~0.2m)	土壤 T8# (0.2~0.5m)	土壤 T9# (0.5~1.5m)	土壤 T10# (0~0.2m)	土壤 5# (0~0.2m)	土壤 6# (0~0.2m)	筛选值/ 管制值	法标 情况
乙烯 (mg/kg)														
1,2-二氯丙 烷(mg/kg)	ND(0.0011	ND(0.0011	ND(0.0011	ND(0.0011	ND(0.0011	ND(0.001 1)	ND(0.001 1)	ND(0.0011)	ND(0.0011)	ND(0.001 1)			5/47	达标
1,1,1,2-四氯 乙烷 (mg/kg)	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.001 2)	ND(0.001 2)	ND(0.0012)	ND(0.0012)	ND(0.001 2)			10/100	达标
1,1,2,2-四氯 乙烷 (mg/kg)	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.001 2)	ND(0.001 2)	ND(0.0012)	ND(0.0012)	ND(0.001 2)			6.8/50	达标
四氯乙烯 (mg/kg)	ND(0.0014	ND(0.0014	ND(0.0014	ND(0.0014	ND(0.0014	ND(0.001 4)	ND(0.001 4)	ND(0.0014)	ND(0.0014)	ND(0.001 4)			53/183	达标
1,1,1-三氯 乙烷 (mg/kg)	ND(0.0013	ND(0.0013	ND(0.0013	ND(0.0013	ND(0.0013	ND(0.001 3)	ND(0.001 3)	ND(0.0013)	ND(0.0013)	ND(0.001 3)			840/840	达标
1,1,2-三氯 乙烷 (mg/kg)	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.001 2)	ND(0.001 2)	ND(0.0012)	ND(0.0012)	ND(0.001 2)			2.8/15	达标
三氯乙烯 (mg/kg)	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.001 2)	ND(0.001 2)	ND(0.0012)	ND(0.0012)	ND(0.001 2)			2.8/20	达标
1,2,3-三氯 丙烷 (mg/kg)	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.001 2)	ND(0.001 2)	ND(0.0012)	ND(0.0012)	ND(0.001 2)			0.5/5	达标
- 氯乙烯 (mg/kg)	ND(0.0010	ND(0.0010	ND(0.0010	ND(0.0010	ND(0.0010	ND(0.001 0)	ND(0.001 0)	ND(0.0010)	ND(0.0010)	ND(0.001 0)			0.43/4.3	达标
苯(mg/kg)	ND(0.0019	ND(0.0019	ND(0.0019	ND(0.0019	ND(0.0019	ND(0.001 9)	ND(0.001 9)	ND(0.0019)	ND(0.0019)	ND(0.001 9)			4/40	达标
	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.001 2)	ND(0.001 2)	ND(0.0012)	ND(0.0012)	ND(0.001 2)			270/100	达标
1,2-二氯苯 (mg/kg)	ND(0.0015	ND(0.0015	ND(0.0015	ND(0.0015	ND(0.0015	ND(0.001 5)	ND(0.001 5)	ND(0.0015)	ND(0.0015)	ND(0.001 5)			560/560	达标
1,4-二氯苯 (mg/kg)	ND(0.0015	ND(0.0015	ND(0.0015	ND(0.0015	ND(0.0015	ND(0.001 5)	ND(0.001 5)	ND(0.0015)	ND(0.0015)	ND(0.001 5)			20/200	达标

						监测结	果							
监测 项目	土壤 T1# (0~0.2m)	土壤 T2# (0.2~0.5m)	土壤 T3# (0.5~1.5m)	土壤 T4# (0~0.2m)	土壤 T5# (0.2~0.5m)	土壤 T6# (0.5~1.5m)	土壤 T7# (0~0.2m)	土壤 T8# (0.2~0.5m)	土壤 T9# (0.5~1.5m)	土壤 T10# (0~0.2m)	土壤 5# (0~0.2m)	土壤 6# (0~0.2m)	筛选值/ 管制值	法标 情况
乙苯 (mg/kg)	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.001 2)	ND(0.001 2)	ND(0.0012)	ND(0.0012)	ND(0.001 2)			28/280	达标
苯乙烯 (mg/kg)	ND(0.0011	ND(0.0011	ND(0.0011	ND(0.0011	ND(0.0011	ND(0.001 1)	ND(0.001 1)	ND(0.0011)	ND(0.0011)	ND(0.001 1)			1290/12 90	达标
甲苯 (mg/kg)	ND(0.0013	ND(0.0013	ND(0.0013	ND(0.0013	ND(0.0013	ND(0.001 3)	ND(0.001 3)	ND(0.0013)	ND(0.0013)	ND(0.001 3)			1200/12 00	达标
对间二甲苯 (mg/kg)	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.001 2)	ND(0.001 2)	ND(0.0012)	ND(0.0012)	ND(0.001 2)			570/570	达标
邻二甲苯 (mg/kg)	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.0012	ND(0.001 2)	ND(0.001 2)	ND(0.0012)	ND(0.0012)	ND(0.001 2)			640/640	达标
2-氯酚 (mg/kg)	ND(0.04)	ND(0.04)	ND(0.04)	ND(0.04)	ND(0.04)	ND(0.04)	ND(0.04)	ND(0.04)	ND(0.04)	ND(0.04)			2256/45 00	达标
苯并[a]蒽 (mg/kg)	ND(0.12)	ND(0.12)	ND(0.12)	ND(0.12)	ND(0.12)	ND(0.12)	ND(0.12)	ND(0.12)	ND(0.12)	ND(0.12)			15/151	达标
苯并[a]芘 (mg/kg)	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)			1.5/15	达标
苯并[b]荧 蔥(mg/kg)	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)	ND(0.17)			15/151	达标
苯并[k]荧 蔥(mg/kg)	ND(0.11)	ND(0.11)	ND(0.11)	ND(0.11)	ND(0.11)	ND(0.11)	ND(0.11)	ND(0.11)	ND(0.11)	ND(0.11)			151/150 0	达标
	ND(0.13)	ND(0.13)	ND(0.13)	ND(0.13)	ND(0.13)	ND(0.13)	ND(0.13)	ND(0.13)	ND(0.13)	ND(0.13)			1.5/15	达标
蘆(mg/kg)	ND(0.14)	ND(0.14)	ND(0.14)	ND(0.14)	ND(0.14)	ND(0.14)	ND(0.14)	ND(0.14)	ND(0.14)	ND(0.14)			1293/ 12900	达标
茚并 [1,2,3-cd]芘 (mg/kg)	ND(0.13)	ND(0.13)	ND(0.13)	ND(0.13)	ND(0.13)	ND(0.13)	ND(0.13)	ND(0.13)	ND(0.13)	ND(0.13)			1.5/15	达标
萘 (mg/kg)	ND(0.09)	ND(0.09)	ND(0.09)	ND(0.09)	ND(0.09)	ND(0.09)	ND(0.09)	ND(0.09)	ND(0.09)	ND(0.09)			70/700	达标
*硝基苯 (mg/kg)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			76/760	达标
*苯胺 (mg/kg)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			260/663	达标

		监测结果												
监测	土壤 T1#	土壤 T2#	土壤 T3#	土壤 T4#	土壤 T5#	土壤 T6#	土壤 T7#	土壤 T8#	土壤 T9#	土壤	土壤 5#	土壤 6#	筛选值/	达标
项目	(0~0.2m)	(0.2~0.5m)	$(0.5\sim1.5\text{m})$	(0~0.2m)	$(0.2 \sim 0.5 \text{m})$	(0.5~1.5m	(0~0.2m)	$(0.2\sim0.5\text{m})$	$(0.5\sim1.5\text{m})$	T10#	(0~0.2m)	(0~0.2m)	管制值	情况
	,	,	,	, ,	,)	,	,	,	(0~0.2m)				
*氯甲烷	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			37/120	
(mg/kg)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			37/120	270
pH 值	8.22	8.50	8.36	8.53	8.15	8.10	8.38	8.17	8.15	8.28				
(无量纲)	0.22	8.30	8.30	0.33	0.13	6.10	0.30	0.17	0.13	0.20				
钴	18	14	12	11	13	15	14	22	23	16			70/350	达标

11大河口五口	监测结果(1	1月19日)
上 上 上	土壤 4#(0~0.2m)	土壤 10#(0~0.2m)
颜色#	黄褐色	黄褐色
质地#	硬塑	硬塑
砂砾含量#	2%~3%	<1%
其他异物#	无	无
pH 值(无量纲)	8.53	8.28
氧化还原电位(mV)#	650.15	639.02
饱和导水率(cm/s)#	1.42×10^{-7}	1.06×10^{-7}
土壤容重(g/cm³)#	1.15	1.35
孔隙度(%)#	58	50

表 4.2-15 土壤理化性质监测结果一览表

对照《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中表 1,项目区域内的各土壤环境质量监测因子(除六价铬)监测值均达到第二类用地筛选值标准限值,六价铬有 2 个点位的监测值超过筛选值,小于管控值,说明项目选址土壤环境质量状况良好。

4.2.6 生态环境现状调查

项目位于华中表处园内,项目所在地四周为已经开发的工业企业用地,场地内为正在建设的厂房,部分裸露的空地,项目周边分布有常见的乔灌木,主要为樟树等常见树种。项目所在区域多为人工生境,人为干扰严重,野生动物种类较少,常见的有鼠类、蛙、蛇、蟾蜍等,均为广布种。根据现状调查和资料收集,评价区域内无国家级及省级保护陆生野生动物。

由此可见,本项目所在区域的生态环境质量一般。

4.3 区域污染源调查与评价

4.3.1 调查内容

对评价区域荆州市经济开发区区域内主要排污企业的基本状况及主要污染物排放情况进行调查,本次环评工作的污染源调查因子如下:

大气环境污染源调查因子: SO₂、NOx;

水环境污染源调查因子: COD、氨氮。

4.3.2 调查结果

本项目污染源调查涉及的区域主要包括荆州开发区重点企业,数据来源于荆州开发区环统数据,调查结果见表 4.3-1。

表 4.3-1 评价区域现状工业污染源调查统计一览表

序	企业名称	废水排 放量		物排放量 吨)		や物排放量 吨)	备注
号		(吨)	COD	氨氮	SO ₂	NOx	
1	荆州市楚晖化工有限公司	256000	25.6	0.03	/	/	/
2	湖北江公科工贸有限公司	248200	24.82	/	/	/	/
3	荆州福天化工有限公司	200	0.02	/	/	/	/
4	荆州市大明灯业有限公司	322000	32.2	0.8211	/	/	/
5	荆州市众益材料有限公司	3100	0.39	/	32.64	2.35	/
6	湖北能特科技股份有限公司	372000	37.2	0.72	329.2	43.97	/
7	太和气体(荆州)有限公司	30	0.003	0.0004	/	/	/
8	荆州市昌盛环保燃料油有限公司	4000	0.4	0.06	3.032	0.327	/
9	锦辉(荆州)硅能科技有限公司	3600	0.36	0.054	/	/	/
10	沙市久隆汽车动力转向器有限公司	7823	0.25	/	/	/	/
11	湖北神电汽车电机有限公司	61000	1.6	/	/	/	/
12	湖北长乐健康食品有限公司	302200	30.22	/	3.046	0.326	/
13	荆州市恒隆汽车零部件制造有限公 司	180000	15.6	/	/	/	/
14	荆州市天翼精细化工开发有限公司	245000	24.5	0.02	3.808	0.411	/
15	江陵奔达制药有限公司	249600	24.96	0.144	74.125	2.058	/
16	国电长源荆州热电有限公司	0	/	/	6045.7 8	6360.58	/
17	荆州市广益化工有限公司	2400	0.24	0.036	/	/	/
18	湖北一休建筑材料有限公司	134000	13.4	/	51.7	1.02	/
19	湖北大明水产科技有限公司	342100	34.21	8.1	117.83	0.66	/
20	湖北吉科化工有限公司	4250	0.34	0.01	2.02	0.21	停产
21	湖北汉科新技术股份有限公司	350000	35.01	2.67	3.4	0.29	/
22	荆州市欣宏纺织印染有限公司	15400	1.47	/	/	/	/
23	荆州市承展纺织印染有限公司	98000	9.37	/	/	/	/
24	湖北汇达科技发展有限公司	372000	417.94	/	87.41	10.342	/
25	湖北瑞邦生物科技有限公司	492600	26.954	0.13	196.52	19.99	/
26	荆州市天玺肉业有限公司	358800	35.88	10.88	1.414	0.153	/
27	荆州市平安防水材料有限公司	1300	0.3	/	58.16	0.882	/
28	荆州市天成印染有限公司	25100	2.4	/	/	/	/
29	荆州健康鸟染整服饰有限公司	30000	4.4	/	/	/	/
30	荆州市丽之源化工科技有限公司	4000	0.4	0.06	2.72	0.59	/
31	荆州市恒泰建材有限公司	250000	25	0.15	2.38	1.43	/
32	荆州市新沙印染有限公司	64400	6.14	/	/	/	/
33	荆州市金发印染有限公司	247400	23.57	2.89	/	/	/

34	荆州市天大印染有限公司	238100	22.74	/	/	/	/
35	荆州市恒利达印染有限公司	73000	6.97	/	/	/	/
36	湖北亚泰石化科技有限公司	350000	35	10.25	54.4	5.88	/
37	湖北沙隆达股份有限公司	345000 0	724.68	14.17	/	/	/
38	小天鹅(荆州)电器有限公司	205000	19.5	1.01	0	8.87	/
39	荆州市金田化工有限公司	800	0.08	/	17	1.47	/
40	荆州市中达印刷材料有限公司	113800	11.38	/	/	/	/
41	荆州市神奇磁业有限公司	304400	30.4358	0.252	2.72	0.294	/
42	华意压缩机(荆州)有限公司	198700	19.83	0.25	/	/	/
43	荆州市三久金属加工有限公司	103000	10.3	0.09	/	/	/
44	荆州市沙市英慧纸业助剂有限公司	10000	0.14	0.03	/	/	/
45	小天鹅(荆州)三金电器有限公司	54560	4.36	/	/	/	/
46	荆州市金马汽车零部件制造	291700	29.17	/	/	/	/
47	荆州环宇汽车零部件有限公司	326200	32.62	/	/	/	/
48	荆州市双美机械有限公司	5000	0.5	0.075	0.54	0.06	/
49	荆州市华强化工有限公司	450	0.045	0.0067	/	/	/
50	荆州市巨鲸传动机械有限公司	270000	12.55	/	/	/	/
51	荆州市奥达纺织有限公司	887300	67.68	/	/	/	/
52	荆州市福兴建材有限公司	300	0.01	/	/	/	/
53	江陵同创机械有限公司	9000	0.8	/	/	/	/
54	荆州市天合科技化工有限公司	390000	39	/	61.2	5.29	/
55	荆州市博尔德化学有限公司	316923	30.2	/	184.24	29.24	/
56	荆州市九天化工科技有限公司	286600	28.66	/	0.98	0.11	/
57	荆州市东兴建材有限公司	9900	0.85	0.05	132.55	10.31	/
58	荆州市强力宝化工涂料有限公司	300	0.03	0	1.55	0.17	/
59	荆州市骅珑气体有限公司	250000	25	0.15	/	/	/
60	荆州市桑田农贸有限公司	1600	0.16	/	0.66	0.04	/
61	荆州市天星沥青有限公司	340	0.01	/	4.35	0.47	/
62	荆州德隆机械有限公司	126000	12.56	/	/	/	/
63	湖北天泽农生物工程有限公司	20	/	/	/	/	/
64	荆州市众兴精细化工厂	344600	34.46	1.7609	51.96	0.21	/
65	荆州市天然虾青素有限公司	367200	36.72	0.12	/	/	/
66	荆州市亿钧玻璃股份有限公司	330000	33	/	/	665.64	/
67	荆州市隆华石油化工有限公司	215000	17.5	/	/	/	/
68	荆州市三强新型建材有限公司	126600	12.66	/	51.68	5.59	/
69	荆州市天意毛纺织有限公司	1800	0.16	/	/	/	/
70	荆州市鹏丰化工有限责任公司	298200	29.82	0.59	1.904	0.205	/
71	荆州市云光印刷器材有限公司	268800	26.88	/	/	/	/
72	湖北三才堂化工科技有限公司	350000	35	2.25	281.6	27.64	/
73	荆州市嘉烨印染有限公司	252800	24.14	/	/	/	/
74	荆州市东惠新型建材有限公司	3600	0.36	/	58.16	4.9	/
75	荆州湘大骆驼饲料有限公司	360000	36	0.15	127.2	2.94	/
76	荆州市弘桥纸制品有限公司	900	0.02	/	5.44	0.59	/

77	湖北越美纺织有限公司	240000	56.9	4.92	/	/	/
78	湖北三雄科技发展有限公司	183200	18.32	0.048	/	/	/
79	荆州福瑞源纺织有限公司	54200	10.62	/	16.25	1.76	/
80	荆州市泰佳制冷器材有限公司	7000	0.7	0.105	/	/	/
81	荆州市永康生物科技有限公司	420800	42.08	1.1	91.6	19.8	/
82	荆州市觉庐化工有限公司	102900	10.29	/	2.04	0.44	/
83	库博标准荆大(荆州)汽车配件有 限公司	234200	19.37	/	/	/	/
84	荆州市依顺食品有限公司	358000	35.8	/	1.22	0.13	/
85	中国石化集团江汉石油管理局沙市 钢管厂	348400	34.84	4.93	/	/	/
86	荆州市达利泰精细化工厂	5000	0.5	/	3.26	0.35	/
87	荆州市盛丰照明电器厂	200	/	/	52.098	0.22	/

5 环境影响预测与评价

5.1 营运期环境影响预测评价

5.1.1 大气环境影响预测评价

5.1.1.1 区域污染气象特征分析

从近二十年气候资料来看,当地平均年降水量为 1079.91mm,年平均气温 16.96℃,最高气温 38.7℃,最低气温-14.9℃,年平均相对湿度 80%,年平均风速 2.1m/s,年均日照时数为 1592.28hr。全年主导风向为偏北风,范围为 0~22.5 度,次导风向为偏南风,范围为 180~202.5 度。

表 5.1-1 近二十年荆州市气象台气温、气压、湿度、降水量统计表

年平均风	最大风速	年平均气	极端最高	最端最低	年平均相	年均降水	年均日照
速(m/s)	(m/s)	温(℃)	气温(℃)	气温(℃)	对湿度(%)	量(mm)	时数(h)
2.1	14.6	16.96	38.7	-14.9	76.75	1079.91	1592.28

荆州市近20年地面气象资料中的月平均温度变化、年平均风速、季小时平均风速的日变化、年均风频的季变化及年均风频等情况进行统计,具体见表5.1-2~表5.1-6。

表 5.1-2 年平均气温(℃)的月变化

月份	1月	2月	3 月	4 月	5月	6月	7月	8月	9月	10 月	11月	12 月	全年
气温	4.3	6.8	10.8	17.2	22.1	25.7	28.2	27.5	23.6	18.1	12.2	6.7	17.0

表 5.1-3 年平均风速 (m/s) 的月变化

月份	1月	2月	3月	4月	5月	6月	7月	8月	9月	10 月	11月	12 月	全年
风速	2.0	2.0	2.3	2.3	2.1	2.1	2.4	2.2	2.2	1.7	1.7	1.9	2.1

表 5.1-4 季小时平均风速的日变化

月份	1	2	3	4	5	6	7	8	9	10	11	12
春季	1.7	1.7	1.8	1.7	1.8	1.8	1.8	2.1	2.3	2.4	2.6	2.7
夏季	1.6	1.6	1.6	1.6	1.6	1.6	1.8	2.1	2.4	2.6	2.8	2.9
秋季	1.5	1.5	1.5	1.5	1.5	1.6	1.6	1.7	2.0	2.1	2.3	2.4
冬季	1.7	1.6	1.7	1.6	1.6	1.7	1.7	1.6	1.8	2.1	2.2	2.3
全年	1.6	1.6	1.7	1.6	1.6	1.7	1.7	1.9	2.1	2.3	2.5	2.6

月份	13	14	15	16	17	18	19	20	21	22	23	24
春季	2.8	2.9	2.9	2.9	2.8	2.5	2.2	2.1	2.0	1.9	1.9	1.8
夏季	3.0	3.0	3.0	3.0	2.9	2.6	2.2	1.9	1.8	1.8	1.7	1.6
秋季	2.5	2.5	2.5	2.4	2.2	1.8	1.7	1.6	1.6	1.5	1.5	1.5
冬季	2.3	2.4	2.4	2.4	2.2	1.9	1.8	1.8	1.7	1.7	1.7	1.7
全年	2.7	2.7	2.7	2.7	2.5	2.2	2.0	1.9	1.8	1.7	1.7	1.7

表 5.1-5 年均风频的月变化及年均风频

月份	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	С
1月	12	19	11	5	3	2	3	4	6	4	2	1	1	2	2	3	23
2月	15	17	10	5	3	1	3	4	6	4	3	2	1	1	2	3	19
3 月	15	16	8	5	3	1	4	6	9	5	4	2	2	2	2	3	16
4 月	13	12	7	3	2	1	5	8	12	8	5	2	2	2	2	4	14
5 月	11	11	8	3	2	1	4	7	11	7	6	3	2	2	3	4	16
6月	9	9	7	3	2	1	5	7	15	8	6	2	3	2	3	3	17
7月	7	8	7	2	2	1	5	8	20	12	6	1	2	1	3	3	11
8月	16	15	11	3	2	1	4	5	9	5	4	2	1	2	3	5	13
9月	18	18	10	3	3	1	3	3	6	3	3	2	1	2	4	6	17
10 月	17	18	8	3	2	1	2	3	4	3	3	2	2	2	4	6	22
11月	14	16	9	4	3	2	3	4	5	4	3	2	2	2	2	4	25
12 月	12	19	11	5	3	2	3	4	6	4	2	1	1	2	2	3	23
全年	13	15	9	4	2	1	4	5	9	5	4	2	2	2	3	4	18

表 5.1-6 年均风频的季变化

月份	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	sw	WSW	W	WNW	NW	NNW	С
春季	12	19	11	5	3	2	3	4	6	4	2	1	1	2	2	3	23
夏季	15	17	10	5	3	1	3	4	6	4	3	2	1	1	2	3	19
秋季	15	16	8	5	3	1	4	6	9	5	4	2	2	2	2	3	16
冬季	13	12	7	3	2	1	5	8	12	8	5	2	2	2	2	4	14

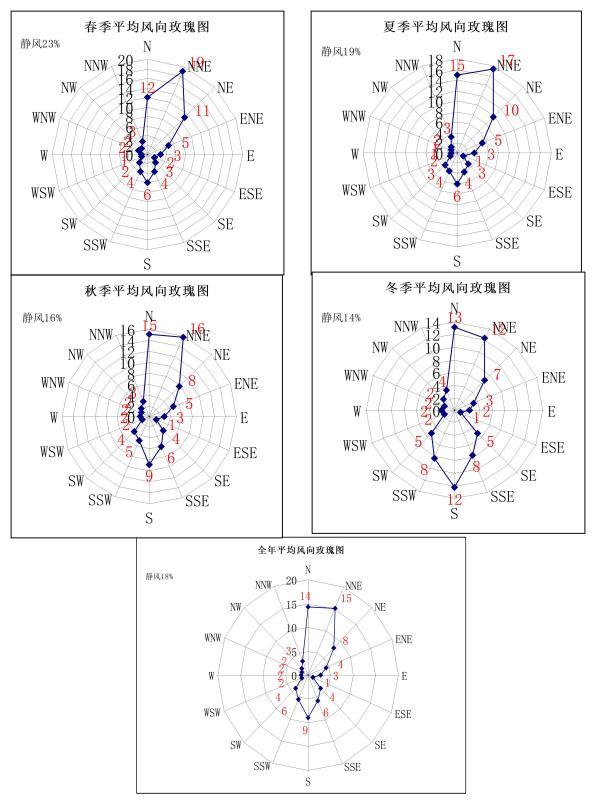


图 5.1-1 全年及各季风向玫瑰图

5.1.1.2 预测等级判定

5.1.1.2.1 评价因子和评价标准筛选

根据本次评价工程分析章节污染源分析,评价因子为 HCl。 各因子评价标准见表 5.1-7。

表 5.1-7 环境空气质量标准限值一览表

评价因子	取值时间	标准值(μg/m³)	标准来源
TTG!	1 小时平均	50	《环境影响评价技术导则一
HCl	日平均	15	一大气环境》(HJ2.2-2018) 表 D.1

5.1.1.2.2 预测源强

表 5.1-8 项目有组织排放污染源强参数表

11		筒底 心坐	底部 海拔	排气 筒高	出口	烟气	烟气温	年排	排放速	率(kg/h)
名称 		(m)	高度 (m)	度 (m)	内径 (m)	流量 (m³/h)	度(K)	放小 时(h)	正常工 况	非正常工
	X	У								
HC1	0	0	31	37	1.2	24000	298.15	7200	0.0064	0.639

表 5.1-9 项目无组织排放污染源强参数表

面源	面源起点坐	标/m		面源参数		主要污染物	排放速率
田 <i>訳</i>	X	Y	长m	宽 m	高 m	土安行架彻	kg/h
车间	667	38	120	24	7.5	HCl	0.0208

5.1.1.2.3 估算模型参数

估算模型参数见表 5.1-10。

表 5.1-10 估算模型参数表

	参数	取值
城市/农村选项	城市/农村	城市
姚印/仫们起坝	人口数 (城市选项时)	100万

最高	哥环境温度/℃	38.7
最低	氐环境温度/℃	-14.9
土	:地利用类型	城市
×	[域湿度条件	中等湿度气候
是否考虑地形	考虑地形	☑是 □否
走百 万 尼地形	地形数据分辨率/m	90m
	考虑岸线熏烟	□是 ☑否
是否考虑岸线熏烟	岸线距离/km	/
	岸线方向/°	1

5.1.1.2.4 估算结果

估算结果汇总见表 5.1-11。

AERSCREEN筛选计算与评价等级-筛选方案 筛选方案名称: 筛选方案 筛选方案定义 筛选结果 筛选结果:未考虑地形高程。未考虑建筑下洗。AERSCREEN运行了 2 次(耗时0:0:13)。按【 查看选项 浓度/占标率 曲线图… 刷新结果(E) 查看内容: 各源的最大值汇息▼ 显示方式: 1小时浓度占标率 ▼ 方位角度(度) 离源距离 (m) 相对源高 序号 污染源名称 HC1 |D10(m) 污染源: 101厂房烟道 232 0.00 0.21 0 污染物:全部污染物 Y 2 电镀车间 0.0 61 0.00 计算点:全部点 各源最大值 38.45 表格显示选项 数据格式: 0.00至+00 数据单位: % • 评价等级建议 厂 Pmax和D10%页为同一污染物 最大占标率Pmax: 38.45% (电镀车间的 HCl) 间的 HCl) 建议评价等级: 一级 占标率10%的最远距离D10%:156m (电镀车间的RCI) 评价范围根据污染源区域外延,应 运括矩形(东西*南北):5.0 * 5.0km,中心坐标(X,Y): (670,42)m, 以上根据Pmax值建议的评价等级和评价范围,应对照导则 5.3.3 和评价范围,应对照导则 5.3.3 和5.4 条款进行调整

表 5.1-11 估算结果汇总表

5.1.1.2.5 等级判定

根据导则规定,取 P 值中最大的 (P_{max}) 和其对应的 D10%作为等级划分依据,本项目 P 值中最大占标率为 38.45%>10%。对照《环境影响评价技术导则---大气环境》

(HJ2.2-2018) 评价等级的划分原则,大气环境影响评价工作等级为一级。

5.1.1.3 预测范围及保护目标

(1) 大气预测坐标系统

以华中表处园西南角为原点,正东向为X轴,正北向为Y轴,建立坐标系。

(2) 预测区域

根据导则,预测范围应覆盖评价范围。一级评价项目根据项目排放污染物的最远影响距离($D_{10\%}$)确定大气环境影响评价范围。即以项目厂址为中心区域,自厂界外延 $D_{10\%}$ 的矩形区域。电镀车间 HCl 的 $D_{10\%}$ 为 156m,小于 2.5km,最终确定本项目预测范围及评价范围为以项目厂址为中心区域,边长 5km 的矩形区域。

(3) 地表参数及计算网格点的选取

根据项目周边地表类型,本次预测地面分为1个扇区,地面特征参数如下:正午 反照率为0.2075,波文率参数为1.625,粗糙率为0.4。

预测网格点按照近密远疏法进行设置,距离源中心 5km 的网格间距按 100m 的间距取值,5~15km 的网格间距按 250m 的间距取值。

(4) 保护目标的选取

本次评价根据预测范围内环境空气敏感区要求,选定环境保护目标作为预测的敏感点,经调查,上述大气环境评价范围内及周边主要环境空气保护目标见表 5.1-12。

序号	名称	坐标/m		功能	相对厂址	相对厂界最近	规模
		X	Y	り形	方位	距离/m	7927天
1	麻林村	1350	114	居住	E, NE	560	68 户 306 人
2	张毛台	1033	703	居住	NE	1440	4户20人
3	林家台	2800	2014	居住	NE	2549	10户47人
4	小王家河	-533	1938	居住	NW	1450	28 户 140 人
5	魏家台	-1900	798	居住	NWW	2450	58 户 265 人
6	新宿驾场	-1367	-1520	居住	SW	2184	101 户 494 人
7	西湖分场	1700	-2907	居住	SE	2040	10户45人
8	姚家岭	2050	-4560	居住	SEE	1600	28户112人

表 5.1-12 项目主要环境空气保护目标分布情况

5.1.1.4 预测模型及地形参数

根据本项目评价等级、预测范围、预测因子及推荐模型适用范围等,选择《环境

影响评价技术导则大气环境》(HJ2.2-2018)表 3 中推荐的 AERMOD 模型进行大气环境影响预测。

预测范围内地形采用 90×90m 地形数据, 预测范围内地形特征见图 5.1-2。

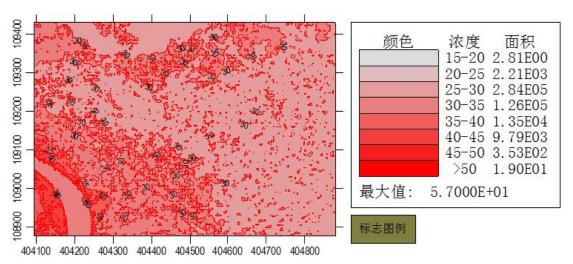


图 5.1-2 预测范围等高线示意图

5.1.1.5 预测方案

满足《环境影响评价技术导则——大气环境》(HJ2.2-2018)表 D.1 的要求。根据导则要求,本次评价预测内容主要包括:

- (1) 拟建项目建成后正常排放条件下,预测环境空气保护目标和网格点处主要污染物的短期浓度和长期浓度贡献值,评价其最大浓度占标率;
- (2)项目非正常排放条件下,预测环境空气保护目标和网格点主要污染物的 1h 最大浓度贡献值,评价其最大浓度占标率。

本项目位于不达标区域,现状浓度超标的污染物为 PM_{10} 、 $PM_{2.5}$,目前荆州市出台了《荆州市城市环境空气质量达标规划(2013-2022 年)》,而本项目新增污染物为氯化氢,不新增颗粒物,本次预测不做 PM_{10} 、 $PM_{2.5}$ 叠加影响分析。本评价预测因子为氯化氢,对各计算点和网格点最大落地的短期浓度做叠加值分析。

5.1.1.6 正常工况预测结果

根据下表 5.1-13 预测结果可知,正常工况下本项目 HCI 小时浓度贡献值的最大占标率为 22.23%<100%,叠加背景值后保证率小时浓度占标为 72.23%<100%,小时值能够达标,日平均浓度贡献值占标率为 13.14%<100%,对区域贡献值较小,叠加背景

值后能够达标。

表 5.1-13 正常工况下环境空气保护目标、网格点处 HCI 的最大地面浓度贡献值

序号	点名称	浓度类型	浓度增量 (μ g/m³)	背景浓度(μ g/m³)	叠加背景浓 度(μg/m³)	评价标准 (μg/m³)	占标率%	是否超 标
	麻林村	1 小时	4.4329	25	29.4329	50	58.87	达标
1		日平均	0.38525		0.38525	15	2.57	达标
		年平均	0.02756		0.000028			
	张毛台	1 小时	4.28966	25	29.28966	50	58.58	达标
2		日平均	0.53318		0.53318	15	3.55	达标
		年平均	0.03837		0.000038			
	林家台	1 小时	1.26962	25	26.26962	50	52.54	达标
3		日平均	0.09867		0.09867	15	0.66	达标
		年平均	0.00381		0.000004			
	小王家 河	1 小时	1.9663	25	26.9663	50	53.93	达标
4		日平均	0.17877		0.17877	15	1.19	达标
		年平均	0.00867		0.000009			
	1	1 小时	2.173	25	27.173	50	54.35	达标
5		日平均	0.09321		0.09321	15	0.62	达标
		年平均	0.00403		0.000004			
	新宿驾场	1 小时	2.01098	25	27.01098	50	54.02	达标
6		日平均	0.14849		0.14849	15	0.99	达标
		年平均	0.00768		0.000008			
	西湖分场	1 小时	1.44807	25	26.44807	50	52.90	达标
7		日平均	0.07919		0.07919	15	0.53	达标
		年平均	0.00483		0.000005			
		1 小时	2.42976	25	27.42976	50	54.86	达标
8	姚家岭	日平均	0.21675		0.21675	15	1.45	达标
		年平均	0.00882		0.000009			
	监测点	1 小时	0.92249	25	25.92249	50	51.84	达标
9		日平均	0.08055		0.08055	15	0.54	达标
		年平均	0.00401		0.000004			
	监测点	1 小时	2.08907	25	27.08907	50	54.18	达标
10		日平均	0.15607		0.15607	15	1.04	达标
		年平均	0.00956		0.00001			

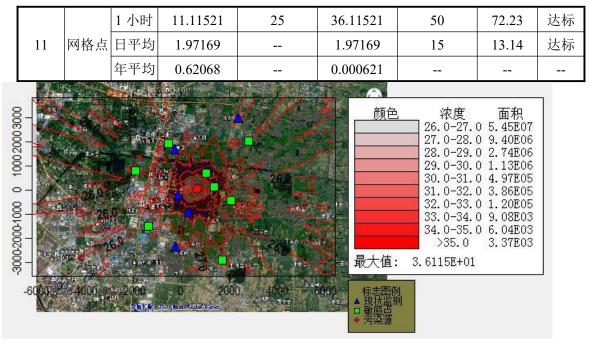


图 5.1-3 正常工况下 HCI 小时浓度叠加值分布图 (单位: μg/m³)

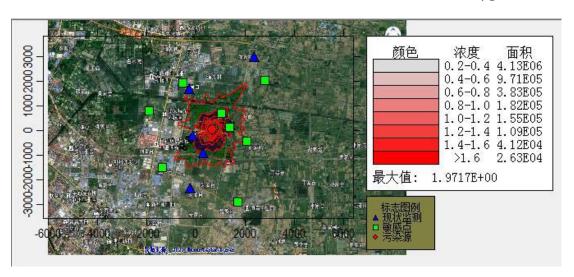


图 5.1-4 正常工况下 HCI 日均浓度预测值分布图

5.1.1.7 非正常工况预测结果

根据下表 5.1-15 预测结果可知,非正常工况下本项目 HCl 小时浓度贡献值的最大占标率为 169.73%>100%, HCl 小时浓度贡献值严重超标。

序号	点名称	浓度类型	浓度增量 μ g/m³	评价标准 μ g/m³	占标率%	是否超标
1	麻林村	1 小时	3.41349	50.0	6.83	达标
2.	岑河镇	1 小时	8.53812	50.0	17.08	

表 5.1-14 非正常工况下环境空气保护目标、网格点处 HCI 的最大地面浓度贡献值

3	段家院	1 小时	1.33465	50.0	2.67	达标
4	张毛台	1 小时	1.38601	50.0	2.77	达标
5	黄港村	1 小时	1.87112	50.0	3.74	达标
6	范家渊	1 小时	1.33205	50.0	2.66	达标
7	林家台	1 小时	2.30591	50.0	4.61	达标
9	监测点	1 小时	2.11666	50.0	4.23	达标
10	监测点	1 小时	2.33673	50.0	4.67	达标
11	网格点	1 小时	84.86713	50.0	169.73	超标

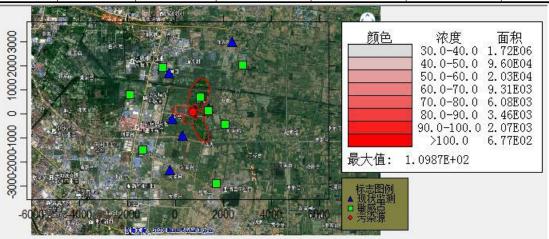


图 5.1-5 非正常工况下 HCI 小时浓度叠加值分布图

5.1.1.8 环境防护距离计算

5.1.1.8.1 大气环境防护距离

根据导则 HJ2.2-2018 的要求,采用导则推荐模式中的大气环境防护距离模式计算 该项目所有废气污染源的大气环境防护距离。计算出的距离是以污染源中心点为起点 的控制距离。对于超出厂界以外的范围,确定为项目大气环境防护区域。此范围为超 过环境质量短期浓度标准值的网格区域。

根据计算结果,本项目从厂界起没有超过环境质量短期浓度标准值的网格区域,因此不需要设立大气环境防护距离。

5.1.1.8.2 卫生防护距离

出于对项目环保从严要求的考虑,本评价参照卫生防护距离计算方法进行计算。 卫生防护距离计算公式如下:

$$\frac{Q_c}{Cm} = \frac{1}{A} (BL^C + 0.25r^2)^{0.50} L^D$$

式中: Cm——标准浓度限值, mg/Nm3

L——工业企业所需卫生防护距离,m

r——有害气体无组织排放源所在生产单元的等效半径,m

A、B、C、D——卫生防护距离计算系数

 Q_c ——工业企业有害气体无组织排放量可以达到的控制水平,kg/h

根据污染物源强及当地的年均风速,由卫生防护距离计算模式计算得出该项目的卫生防护距离。

根据《制定地方大气污染物排放标准的技术方法》(GB/T13201—91),"卫生防护距离在 100m 以内时,级差为 50m";"无组织排放多种有害气体的工业企业,按 Qc/Cm 的最大值计算其所需卫生防护距离;但当按两种或两种以上的有害气体的 Qc/Cm 值计算的卫生防护距离在同一级别时,该类工业企业的卫生防护距离级别应该高一级。"

该项目卫生防护距离计算结果详见表 5.1-17。

排放源	污染物	排放量 kg/h	卫生防护距离计算 值(m)	空气质量标准 mg/m³
301#厂房 4 楼车 间	HC1	0.0208	20.719	0.05

表 5.1-15 项目卫生防护距离计算表

工业企业大气污染源 ○ I 类: 与无组织排	1190%							
 - >c > > c > > c - > < > L 	放源共存的排放阿	司种有害气	体的排气筒(的排放量。力	大于标准规5	定的允许排	汝里的三 分之一 者	
● II 类: 与无组织排	放源共存的排放區	同种有害气	体的排气筒(的排放里之	小于标准规:	定的允许排	设量的三分之一,或无排气	筒,但按急性反应确定
○ III类: 无排放同种	有害物质的排气简	筒与无组织	非放源共存	且无组织排	非放的有害	物质的容许	农度是按慢性反应指标确定	

图 5.1-6 卫生防护距离计算截图

本项目车间 HCl 计算的卫生防护距离为 50m,根据华中表处园环评中卫生防护距离设置要求,电镀车间设置 200m 卫生防护距离,因此本项目最终卫生防护距离取电镀车间外推 200m 范围。

本项目车间 HCI、铬酸雾、氢氰酸计算的卫生防护距离分别为 50m,提高一级为

100m。根据华中表处园环评中卫生防护距离设置要求,电镀车间设置 200m 卫生防护距离,因此本项目最终卫生防护距离取电镀车间外推 200m 范围。

根据以上大气环境防护距离和卫生防护距离共同考虑,取其大者得到项目环境防护距离,并作出环境防护距离即环境防护距离包络线图,详见报告书项目环境防护距离包络线附图。经实地踏勘,本项目环境防护距离包络线范围之内不存在现有住户及其他大气环境保护目标。

本次评价提出今后在该项目卫生防护距离覆盖范围内不应新建居住区、学校、医院等大气环境敏感建筑物。

5.1.1.9 大气环境影响自查表

本项目大气环境影响自查见下表:

表 5.1-16 大气环境影响评价自查表

エ	 作内容					自	査项	 			
评价等	评价等级		一级团	•			_4	汲		Ξ	.级口
级与范 围	评价范围	边一	K=50k	m□		边	长5-5	50km□		边长=	=5km☑
评价因	SO ₂ +NOx排 放量	≥2000t/a□ 500-2000t/a□			1		<50)0t/a☑			
子	评价因子	基	基本污染 其他污	と物(5染物(F	ICl))			舌二次 括二次		
评价标准	评价标准	国家标	国家标准√ 地方标准		附录D	V	其	他标准√			
	环境功能区	一类区□ 二类[$\boxtimes $		类区	和二类区			
राज र 10) जर	评价基准年	(2019) 4			年						
现状评 价	环境空气质 量现状调查 数据来源	长期例	长期例行监测数据□ 主管部门发		布的数据□	现	.状补	充监测☑			
	现状评价		-	达标区□	•				不达标	KX V	1
污染源 调查	调查内容	排放》 本项目 常排放	本项目正常 排放源② 本项目非正 常排放源② 现有污染源		其他在建 建项目污		<u>X</u>	域污染源 ☑			
大气环 境影响	预测模型	AER MOD ☑	AD MS	AUSTA 2000		EDI AEI		CALPU FF□	网格 型		其他□
预测与	预测范围	边长≥50	0km□		边	长5-5	0km⊏]	ì	力长=	5km☑
评价	预测因子	予	页测因-	子(HCl)				包括二	二次PN	⁄12.5□]

工	 作内容				自	查项目		
						不包括二	次PM2.5□	
	正常排放短 期浓度贡献 值	C	C _{本项目} 最大	占标率≤10	0%☑	C _{本项目} 最大占标	示率>100%□	
	正常排放年 均浓度贡献	一 类 区	С _{本项目} 最大占标率≤10%□		\mathcal{Z}		C _{本项目} 最大占	标率>10%□
	值	二类区	$\mathrm{C}_{\scriptscriptstyle{\mathrm{a}}$ 項目最	С本项目最大占标率≤30%☑		С本項目最大占标率>30%□		
	非正常排放 1h浓度贡献 值	非正	丰正常持续时长()h C _{非正常}		.占标率≤100%□	C _{非正常} 占标率> 100%☑		
	保证率日平 均浓度和年 平均浓度叠 加值		C叠加达标□		C叠加不达标□			
	区域环境质 量的整体变 化情况		k≤-20%□ K>-20%		20%□			
环境监	污染源监测	ij	监测因子:	()		且织废气监测□ 且织废气监测□	无监测□	
测计划	环境质量监 测	监测	则因子:	(HCl)	监测	则点位数(6)	无监测□	
	环境影响			F	可以接受[☑不可以接受□		
评价结 论	大气环境防 护距离				距()厂	界最远()m		
אנ	污染源年排 放量		SO ₂ :	NO ₂	t/a	颗粒物: () t/a	VOCs:	
注: "□">	为勾选项,填"ν	l ^{,,} ; "	()"为内	容填写项				

5.1.2 地表水环境影响评价

根据《环境影响评价技术导则-地面水环境》(HJ2.3-2018)中的分级原则与依据,本项目地面水环境评价工作等级为三级 B。根据导则要求,三级 B 可不进行水环境影响预测。8.1.2 规定:水污染影响型三级 B 主要评价内容包括: a)水污染控制和水环境影响减缓措施有效性评价,b)依托污水处理设施的环境可行性评价。

5.1.2.1 水污染控制和水环境影响减缓措施有效性评价

拟建项目废水依托华中表处园电镀废水深度处理车间处理。本项目各类废水可经 分质、分类完善的管网排入电镀废水深度处理车间处理达标排放,企业废水满足华中 表处园电镀废水深度处理车间进水水质要求,本项目生产废水共分为 10 类,包括高浓有机废水、高浓酸性废水、前处理废水、高浓锌络废水、络合废水、综合废水、高浓重金属废水、高浓地面清洗水,通过废水收集管网进入车间 1 层的废水收集罐,进电镀废水深度处理车间进行处理,部分废水回用,尾水经专用管网接入排江泵站,废水经泵站提升排入长江。废水中第一类重金属污染物经分质处理达到《电镀污染物排放标准》(GB 21900-2008)表 2 中车间或生产设施排口排放限值要求后,与其他工业废水一起经园区专业污水处理设施进行处理,总排口废水达到《电镀污染物排放标准》(GB 21900-2008)表 2 标准以及《城市污水再生利用 工业用水水质》(GB/T 9923-2005)中相应排放标准限值要求。

废水排放执行《电镀污染物排放标准》(GB21900-2008)》;同时满足排污口相应排放要求,排污口执行《城市污水再生利用工业用水水质》(GB/T9923-2005)、《纺织染整工业水污染物排放标准》(GB4287-2012)以及《省水利厅关于荆州开发区中环水业有限公司污水处理厂改扩建工程入河排污口设置论证报告的审查意见》(鄂水许可[2016]13 号)相关标准限值:COD ≤60mg/L、BOD₅≤10mg/L、NH₃-N≤5mg/L。

根据《华中表面处理循环经济产业园项目环境影响报告书》中地表水环境影响预测分析结果,正常排放条件下,华中表处园废水经处理后,各项特征因子没有在下游江段出现超标点位,没有形成污染带,对长江水环境影响较小。非正常排放条件下,华中表处园废水排放的主要特征因子将会对下游江段造明较大面积的影响。

本项目排放的废水依托电镀废水深度处理车间处理后达标排放,对长江水质影响较小,环境能够接受。建设单位应加强对生产设施的维护与监管,杜绝由于发生事故溢出重金属废水污染环境的情况发生。在电镀废水深度处理车间发生事故时,废水收集进入事故应急池,按照废水事故应急预案处置,杜绝生产废水未经过处理直接排入地表环境情况发生。

5.1.2.2 项目废水进电镀废水深度处理车间可行性分析

依托污水处理设施的环境可行性评价详见地表水环境保护措施及其可行性分析章节。

5.1.2.3 地表水环境影响自查表

本项目地表水环境影响自查见下表:

表 5.1-17 地表水环境影响评价自查表

	工作内容	自查项	Î 🛮		
	影响类型	水污染影响型☑ ; 水文要素影响型□			
		饮用水水源保护区□;饮用水取水口□;涉水的自然保护区	□; 重要湿地□;		
影	水环境保护目标	重点保护与珍稀水生生物的栖息地□; 重要水生生物的自然	产卵场及索饵场、越冬场和洄游通道、天然渔场等渔业		
响		水体□; 涉水的风景名胜区□; 其他 ☑			
识		水污染影响型	水文要素影响型		
别	彩門坯在	直接排放□;间接排放☑;其他	水温□;径流□;水域面积□		
	影响因子	持久性污染物□;有毒有害污染物□;非持久性污染物□;	水洞口 水位(水溶)口 沟油口 沟景口 其仙口		
	彩刊[2]	pH 值□; 热污染□; 富营养化☑; 其他	水温□;水位(水深)□;流速□;流量□;其他□		
	评价等级	水污染影响型	水文要素影响型		
	月 月 子 级	一级□;二级□;三级 A□;三级 B ☑	一级口;二级口;三级口		
		调查项目	数据来源		
	区域污染源	□ 己建□;在建□;拟建□;其	排污许可证口;环评口;环保验收口;既有实测口;现		
		他□ 1.550,000,000	场监测口;入河排放口数据口;其他口		
		调查时期	数据来源		
	受影响水体水环境质量	丰水期口,平水期口,枯水期口,冰封期口	生态环境保护主管部门口,补充监测团,其他口		
现		春季□;夏季□;秋季□;冬季□	工心不死所,工目即17日,刊为血病已,八世日		
状	区域水资源开发利用状况	未开发口; 开发量 40%以下口; 开发量 40%以上口			
调		调查时期	数据来源		
查	水文情势调查	丰水期口,平水期口,枯水期口,冰封期口	水行政主管部门口;补充监测口;其他口		
		春季口;夏季口;秋季口;冬季口			
		监测时期	监测因子 监测断面或点位		
			(COD、BOD₅、NH₃-N、总氮、		
	补充监测	丰水期口,平水期口,枯水期区,冰封期口	总磷、石油类、总铬、六价铬、 监测断面或点位个数		
		春季□;夏季□;秋季□;冬季☑	总镍、总镉、总银、总铜、总 (3) 个		
	\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		铁、总铝、氟化物、总氰化物)		
现	评价范围	河流: 长度() km; 湖库、河口及近岸海域: 面积() km²			
状	评价因子	(COD、BOD ₅ 、NH ₃ -N、总氮、 总磷、石油类、总铬、六	价铬、总镍、总镉、总银、总铜、总铁、总铝、氟化物、		
评		总氰化物)			

价		河流、湖库、河口: I 类口; II 类口; III 类 ; IV 类口; V 类口	
	评价标准	近岸海域:第一类口;第二类口;第三类口;第四类口	
		规划年评价标准()	
) Tr /A p 1.440	丰水期□;平水期□;枯水期□;冰封期□	
	评价时期	春季□;夏季□;秋季□;冬季☑	
		水环境功能区或水功能区、近岸海域环境区水质达标状况□: 达标☑ ; 不达标□	
		水环境控制单元或断面水质达标状况□:达标□;不达标□	
		水环境保护目标质量状况□: 达标□; 不达标□	
		对照断面、控制断面等代表性断面的水质状况□: 达标□; 不达标□	745 D
	评价结论	底泥污染评价□	达标区 □ □ 不达标区□
		水资源与开发利用程度及其水文情势评价□	小丛柳区口
		水环境质量回顾评价□	
		流域(区域)水资源(包括水能资源)与开发利用总体状况、生态流量管理要求与现状满足程度、	
		建设项目占用水域空间的水流状况与河湖演变状况口	
	预测范围	河流:长度()km;湖库、河口及近岸海域:面积()km²	
	预测因子	()	
		丰水期□;平水期□;枯水期□;冰封期□	
影	预测时期	春季□;夏季□;秋季□;冬季□	
彩 响		设计水文条件□	
预		建设期□;生产运行期□;服务期满后□	
测	预测情景	正常工况口; 非正常工况口	
0/1	JAWIH A	污染控制和减缓措施方案□	
		区(流)域环境质量改善目标要求情景口	
	预测方法	数值解□:解析解□;其他□	
	JAMA	导则推荐模式口: 其他口	
		排放口混合区外满足水环境管理要求口	
影		水环境功能区或水功能区、近岸海域环境功能区水质达标□	
响	水环境影响评价	满足水环境保护目标水域水环境质量要求口	
评	カペート・ラ元 ボン 中寸 レー リー	水环境控制单元或断面水质达标□	
价		满足重点水污染物排放总量控制指标要求,重点行业建设项目,主要污染物排放满足等量或减量替	代要求口
		満足区(流)域水环境质量改善目标要求□	

					变化评价、主要水文特			
					口的建设项目,应包括: 用上线和环境准入清单:			生评价口
		污染物名		2 (), () ()	排放量/ (t/a)			衣度/(mg/L)
	污染源排放量核算	(COD、NH₃-N、总铬	、总镍、总锌)	(0.336 0.00254	0.0285、0.00121、0.001	00056、	(60, 5,	1.0, 0.5, 1.5)
		污染源名称	排污许可证编	号	污染物名称	排放量	/ (t/a)	排放浓度/(mg/L)
	H 1 (03/3 724 73	上大海县 → 帆水期 () ···3/a						
	生态流量确定	生态流量: 一般水期() m³/s; 鱼类繁殖期() m³/s; 其他() m³/s 生态水位: 一般水期() m; 鱼类繁殖期() m; 其他() m						
	环保措施	污水处理设施口; 水文	污水处理设施□;水文减缓设施□;生态流量保障设施□;区域消减□;依托其他工程措施☑;其他					[; 其他
					环境质量			污染源
防		监测方式	Ç	手动☑;自动□;无监测		手动☑;	自动☑;无监测	
治 措	监测计划(依托华中表处园)	监测点位	Ĺ	(排江	口上游 500m、下游 500 游 1000m))m、下	()=	5水总排口)
施		监测因子				N、总锌、总镍、总铬)		
	污染物排放清单							
	评价结论	可以接受☑ ; 不可以	ໄ接受□				<u> </u>	
注:	"□"为勾选项,填"√";"()"为	内容填写项;"备注"为其	其他补充内容。					

5.1.3 声环境影响评价

5.1.3.1 噪声源分析

固定声源主要为厂区内固定生产设备,噪声值在 $65\sim100$ dB(A),治理后噪声值在 $55\sim70$ dB(A),详见表3.4-7。

5.1.3.2 声波传播途径分析

厂区现状地面类型为旱地;项目建成投产后,厂区周围布置绿化带,地面类型为硬化地面。

项目所在区域年平均风速 2.1m/s, 年均气温 16.96℃, 年平均相对湿度为 80%, 评价范围地形较平坦。

5.1.3.3 预测内容

根据拟建工程的噪声源分布情况,在工程运行期对厂址的厂界四周噪声影响进行 预测计算。

5.1.3.4 预测模式

以预测点为原点,选择一个坐标系,确定各噪声源位置,并测量各噪声源到预测点的距离,将各噪声源视为半自由状态噪声源,按声能量在空气传播中衰减模式可计算出某噪声源在预测点的声压级,预测模式如下:

①室外声源

计算某个声源在预测点的倍频带声压级

$$L_{oct}(r) = L_{oct}(r_0) - 20\lg\left(\frac{r}{r_0}\right) - \Delta L_{oct}$$

式中: Loct(r)——点声源在预测点产生的倍频带声压级;

Loct(r0)——参考位置 r0 处的倍频带声压级;

r——预测点距声源的距离, m;

r0——参考位置距声源的距离, m;

ΔLoct——各种因素引起的衰减量(包括声屏障、遮挡物、空气吸收、地面效应等引起的衰减量,其计算方法详见"导则"正文)。

如果已知声源的倍频带声功率级 Lwoct, 且声源可看作是位于地面上的,则

$$L_{oct}(r_0) = L_{w-oct} - 20 \lg r_0 - 8$$

由各倍频带声压级合成计算出该声源产生的声级 LA。

②室内声源

首先计算出某个室内靠近围护结构处的倍频带声压级:

$$L_{oct,1} = L_{w \ oct} + 10 \lg \left(\frac{Q}{4\pi r_1^2} + \frac{4}{R} \right)$$

式中: Loct, 1 为某个室内声源在靠近围护结构处产生的倍频带声压级, Lwoct 为 某个声源的倍频带声功率级,rl 为室内某个声源与靠近围护结构处的距离,R 为房间 常数, O 为方向因子。

计算出所有室内声源在靠近围护结构处产生的总倍频带声压级:

$$L_{oct,1}(T) = 10 \lg \left[\sum_{i=1}^{N} 10^{0.1 L_{oct,1(i)}} \right]$$

计算出室外靠近围护结构处的声压级:

$$L_{oct,2}(T) = L_{oct,1}(T) - (TL_{oct} + 6)$$

将室外声级 Loct, 2(T)和透声面积换算成等效的室外声源, 计算出等效声源第 i 个 倍频带的声功率级 Lwoct:

$$L_{w \ oct} = L_{oct,2}(T) + 10 \lg S$$

式中: S 为诱声面积, m2。

等效室外声源的位置为围护结构的位置,其倍频带声功率级为 Lwoct,由此按室外 声源方法计算等效室外声源在预测点产生的声级。

由上述各式可计算出周围声环境因该项目设备新增加的声级值、综合该区内的声 环境背景值,再按声能量迭加模式预测出某点的总声压级值,预测模式如下:

150

$$Leq_{E} = 10\lg(\frac{1}{T})\left[\sum_{i=1}^{n} t_{ini}10^{0.1L_{Aini}} + \sum_{i=1}^{m} t_{outj}10^{0.1L_{Aoutj}}\right]$$

式中: Leq 总—某预测点总声压级, dB(A);

n—为室外声源个数:

m—为等效室外声源个数:

T—为计算等效声级时间。

5.1.3.5 噪声影响预测结果分析

(1) 环境噪声预测结果

本环评按《环境影响评价技术导则 声环境》(HJ 2.4-2009)噪声导则进行了预测,噪声衰减因素中考虑了几何发散、空气吸收、地面吸收和屏障衰减等的影响。根据噪声预测模式进行计算可得拟建工程对厂界噪声的贡献值影响预测结果见下表:

编	点位名称	时段		预测:	结果 LAeq o	dB(A)	
号		的权	贡献值	现状值	预测值	标准限值	达标情况
1#	东厂界外 1m	昼	22.5	50.2	50.3	65	达标
1#	水/ 介介 IIII	夜	32.5	43.3	43.6	55	达标
2#	南厂界外 1m	昼	30.6	51.8	51.8	65	达标
2#		夜	30.0	44.6	44.8	55	达标
3#	西厂界外 1m	昼	6.8	48.0	48.0	65	达标
3#	V4) 369F IIII	夜	0.8	40.2	40.2	55	达标
4#	北厂界外 1m	昼	10.1	49.4	49.4	65	达标
4#	10/ 2621 IIII	夜	10.1	40.3	40.3	55	达标

表 5.1-18 噪声影响预测结果一览表

根据预测,各厂界昼间、夜间噪声预测值均未出现超标,四向厂界噪声预测值均满足《工业企业厂界环境噪声排放标准》(GB 12348-2008)表 1 工业企业厂界环境噪声排放限值中的 3 类声环境功能区标准限值。

综上所述,项目营运期对外界声环境的影响较小。

5.1.4 固体废物环境影响评价

5.1.4.1 固废处理与处置情况

本项目固体废物主要为废过滤渣、污泥、废槽液、废滤芯、废包装材料等,均为危险废物,项目危险废物产生量约为23.59t/a。危废暂存间进行防腐防渗处理,建设单位在生产车间设置防渗漏桶收集,定期收集的危险废物及时送至华中表处园统一设置规范的危险废物临时储存点,按危险废物的管理条款进行分类储存,并进行防漏或防渗处置,定期送往有资质的危废处置单位进行处置。

员工每周更换一次抹布、手套等劳保用品,更换下来的废弃劳保用品量约为1.25t/a,属于 HW49 类危险废物,根据《危险废物名录(2016 版)》的规定,废弃劳保用品混入生活垃圾中进行收集处理,属于豁免类,可以按照一般固体废物进行处置,不需按

照危险废物进行处置。

此外,还有少量的生活垃圾,产生量约为 15t/a,由环卫部门统一收集处理。固体废物采取以上处理措施以后,不会产生二次污染。

5.1.4.2 危险废物环境影响分析

针对运营期危险固废,企业在车间内建设一个面积为 5m² 的危险废物暂存点,收 集的危险废物及时送至华中表处园统一设置规范的危废暂存间,委托有资质单位处置。

一、危险废物暂存设施环境影响分析

(1) 选址可行性

企业危废暂存点设置在 301#厂房内,将采取防雨、防晒、防渗等措施,不同类型的废物分区放置,满足《危险废物贮存污染控制标准》(GB18597-2001)及其 2013 年修改单要求。其设计参数如下:

危废暂存点地面按《危险废物贮存污染控制标准》(GB18597-2001)及其修改单的要求进行防渗处理。具体做法主要包括:环氧乙烯基玻璃衬里,厚度 2mm(乙烯基五步七油+1mm 厚乙烯基砂浆重防腐层),再用 5~10mm 厚的 PP 板做高度至少 12cm 托盘防护;

(2) 储存能力

项目危险废物暂存点占地面积为 5m²,用于危废的临时周转。根据工程分析结果,本项目建成并投入运行后全厂危险废物合计产生量约 23.59t/a,全厂每天危险废物产生量约为 0.078t/d,采用 200kg 塑料桶盛装,每只塑料桶按直径 0.58m 计(占地面积约 0.26m²),则危废暂存点最大暂存量约为 3.8t,不超过日产生量,企业危险废物日产日清。因此,项目危废暂存点满足本项目建成投运后全厂危废暂存需求。

(3) 对周边环境影响

危险废物暂存期内,各类危险废物收集后储存于密闭容器内,因此不会对周边环境空气造成明显影响;暂存间地面进行了防渗处理,设有堵截泄漏的裙角,当发生泄漏时可回收泄漏物料,不会发生因废物泄漏导致对地表水、地下水和土壤的影响。

(4) 依托华中表处园危废贮运的可行性

华中表处园内设置 740m² 废弃物处置中心(危废暂存间)1 座,位于电镀污泥综合利用处置中心左侧,按照甲类防火标准建设,目前正在建设中,预计 2020 年 11 月底完工。本项目产生的危废废物由专用桶收集,由企业运送到华中表处园内的危废暂存间,再由园区委托给有资质单位处置,依托可行。

(5) 对周边环境影响

危险废物暂存期内,各类危险废物收集后储存于密闭容器内,因此不会对周边环境空气造成明显影响;暂存间地面进行了防渗处理,设有堵截泄漏的 PP 托盘,当发生泄漏时可回收泄漏物料,不会发生因废物泄漏导致对地表水、地下水和土壤的影响。

二、危险废物运输对环境的影响分析

(1) 危险废物运输路线

危废在运输过程中,如果管理不当或未采取适当的污染防治和安全防护措施,则 会造成污染。本项目危废主要有两个转运过程,一是从企业危废暂存点转运至华中表 处园危废暂存间,二是从危废暂存间转运至危废处置单位。

华中表处园内部转运由企业负责,企业应做好转运记录,转运过程应按照要求进行分类、包装,确保转运车上物品稳固牢靠,不滑落、不泄露、不抛洒。

华中表处园外部危险废物运输必须由具备资质的单位承担。本项目依托的危废处置单位应配置具有危险废物运输资质的运输系统,配置危险废物专用运输车,每台运输车辆装备有 GPS 卫星跟踪定位系统,危险废物的运输由该单位负责。

委托危废处置单位运输应采取专车、专用容器进行,并按规定程序进行贮存,储运过程将采取可靠、严密的环境保护对策,同时危险废物按规定线路进行运输。因此其运输过程对环境影响较小。危废处置单位应严格遵守《道路危险货物运输管理规定》(交通部令2005年第9号),必须对危险废物的运输加以控制和管理。运输危险废物,必须同时符合两个要求,一是必须采取防止污染环境的措施,符合环境保护的要求,做到无害化的运输;二是遵守国家有关危险货物运输管理的规定,符合危险货物运输的安全防护要求,做到安全运输。

(2) 具体的防治污染环境的措施有:

- ① 运输时应当采取密闭、遮盖、捆扎、喷淋等措施防止扬散;对运输危险废物的设施和设备应当加强管理和维护,保证其正常运行和使用;
 - ② 不能混合运输性质不相容而又未经安全性处置的危险废物;
- ③ 运输危险废物的设施和设备在转作他用时,必须经过消除污染的处理,方可使用:
- ④ 运输危险废物的人员,应当接受专业培训,经考核合格后,方可从事运输危险 废物的工作;
 - ⑤ 运输危险废物的单位应当制定在发生意外事故时采取的应急措施和防范措施;
- ⑥ 运输时,发生突发性事故必须立即采取措施消除或者减轻对环境的污染危害, 及时通报给附近的单位和居民,并向事故发生地县级以上人民政府环境保护行政主管 部门和有关部门报告,接受调查处理;
 - ⑦ 承运危险废物时,应在危险废物包装上按照 GB18597 附录 A 设置标志;
- ⑧ 危险废物公路运输时,运输车辆应按 GB13392 设置车辆标志,并采用规定的专用路线运输;
- ⑨ 卸载区的工作人员应熟悉废物的危险特性,并配备适当的个人防护装备。卸载 区配备必要的消防设备和设施,并设置明显的指示标志。
 - ⑩ 危险废物装卸区应设置隔离设施,液态废物卸载区应设置收集槽和缓冲罐。

在采取上述措施后,可有效减少危险废物运输对环境的影响,本项目危险废物运输过程不会对环境空气造成明显不良影响,不会引起周边大气环境质量功能的变化, 在可接受范围内。

三、委托处置的环境影响分析

本项目产生的危险废物由华中表处园统一委托有相应处理资质的单位处置,其处置单位在湖北省环保厅网站(http://report.hbepb.gov.cn:8080/pub/root8/)中查询《湖北省危险废物经营许可证》单位名录。周边地市可以处理本项目危废的单位有湖北天银危险废物集中处置有限公司,本次评价委托处置可行。

综上所述,拟建项目按照"减量化、资源化、无害化"原则,从源头减少了固体 废物的产生,最终外运的固体废物均采取了合理的处置或利用措施,不会对厂址周围 环境造成影响。

5.1.5 地下水环境影响评价

5.1.5.1 区域水文地质条件调查

本项目地下水区域水文地质环境主要依据《沙市 1/20 万水文地质图说明书》进行阐述,本项目选址区域隶属于原沙市区。

5.1.5.1.1 气象水文条件

区域地处江汉平原的中心地带,属于亚热带季风气候区。降雨随季节变化比较明显,一般是夏雨多余春秋两季,降雨量自北向南增加是普遍性规律。

水系非常发育, 充沛的降雨和丰富的地表水资源, 给地下水的补给造成了有利条件。

5.1.5.1.2 地形地貌

区域地势西北高东南低。西北部最高山峰是八岭山,海拔 101m,东南部一般在 35米。在西北部的垅岗地形区,沟谷溪流较多,但多是谷浅坡缓,坡角多在 5~10°之间,相对高差为 10~25m。其余地区统属于长江、汉水一、二阶地。这一带地势低平,河湖交错,河谷宽展,河曲发育。

根据区域地下水相关情况对地形起伏,水系状况和阶地排列等情况的分析,地下水的大致流向是西北东南方向。由于河谷阶地堆积物都分布在上第三系的侵蚀台面上,所以第四系松散含水岩系与上第三系含水岩系有密切的水力联系。尤其是河床堆积层的底线往往都切穿下伏含水层的顶板,故下伏含水岩系间接承受江水补给。地下水动态都受江水的涨落影响。

5.1.5.1.3 底层岩性及对含水岩层(系)的地下水类型划分

由于第四系上更新统冲,洪积层(Q3al+pl)几乎都由黏土层组成,底部的砂、砾石薄,水量少,将其划分为非含水(隔水)岩系。

其余分别归属于两个含水岩系之内,即松散第四系含水岩层(系)和碎屑岩含水岩系。在此基础上再根据岩性及其空隙性特征和水动力特征以及地貌,进一步细化为五种地下水类型,即①河漫滩砂、砂砾石孔隙潜水;②长江汉水一级阶地砂、砂砾石孔隙承压水;③长江二阶地砂、砂砾石孔隙承压水;④岗丘砂岩砂砾岩、玄武岩孔隙

裂隙水;⑤下伏泥岩、砂砾岩互层层间孔隙承压水。

5.1.5.1.4 各含水岩系的水文地质特征

(1) 松散第四系含水岩层(系)

①河漫滩砂、砂砾石孔隙潜水分布在长江和汉水的两侧或者江心沙洲。全部由全新统的砂、砂砾石组成。长江一带厚度为 40m 左右,汉水一带为 10~20m。水位很浅,一般多在 0.5m 以内。地下水受降水补给,其动态受江水涨落影响较大。水量丰富,钻孔最大可能涌水量大于 5000t/昼夜。

②长江汉水一级阶地砂、砂砾石孔隙承压水

为上第三系和第四系覆盖。玄武岩除在八岭山一带出露面积较大以外,还在四方铺以西发现有零星露头。

下第三系红层裂隙不发育,仅有微弱的裂隙水存在。在其下部的砂砾岩中,会有 裂隙孔隙水存在,但需用深井揭示。由于地面出露很少,所以主要接受第四系和上第 三系地下水的补给。水量极贫乏,钻孔最大可能涌水量小于 50 吨/昼夜。

喜山期玄武岩穿切红层,常以喷出相出露储水条件优于红层。主要是由于气孔状构造很发育,裂隙孔隙含水,水量性对较大。据八岭山茶场钻孔抽小资料,孔深近150m,涌水量达400吨/昼夜。

②下浮泥岩、砂岩、砂砾岩互层层间孔隙承压水

该岩系全部隐伏于第四系之下的上第三系承压含水岩系,一般在垄岗地区埋深多在 15~25m 之间,在河谷平原地区多为 50~100m 之间。岩系厚度自西北向东南逐渐加大,在垄岗地区厚度多在 300m 以下,在 1-2 级阶地多在 500~800m 之间。

隔水层为灰绿色及灰白色的粘土层,含水层为砂岩及砂砾岩。一般常呈现互层状,隔水层往往大于含水层的厚度。成岩度很低,一般粘土岩多半为半固结状态,砂岩及砂砾岩略有固结,一般岩性多为松散状态。水量丰富,钻孔最大可能涌水量多在1000~5000 吨/昼夜。为承压水,承压力不大,一般多为负水头。但在 Y 角庙和李市一带多为正水头,水位高出地面 0.2~0.8m。在西北部的垄岗地区,水位多超过 10m。在长江及汉水一、二阶地多在 1~5m 之间。

由于全部隐伏于第四系之下,故不能直接承受降雨和水系补给,主要借助于侵蚀台面,从第四系含水层中得到补给,也可承受上游地下径流补给。

水化学类型为重碳酸钙钠型及重碳酸钙镁型,矿化度小于1g/L。

5.1.5.2 项目所在区域地下水相关情况

锦辉 (荆州) 硅能科技有限公司选址距离本项目约 2.8km,参考湖北省水文地质工程地质勘察院为该公司出具的《锦辉 (荆州)硅能科技有限公司荆州硅能蓄电池项目地下水调查报告》分析区域地下水相关情况。

(1) 区域地质

工程场区位于新华夏系第二沉降带江汉一级沉降区江汉盆地内。江汉盆地隶属扬子准地台之两湖断坳带,区内第四系覆盖层为冲积相、河湖相粘性土、粉细砂及砂砾层,呈韵律沉积,厚度 60~170m,下覆岩层为第三系(E)为以灰黄色为主的杂色泥岩、粉砂岩和砂砾岩互层,厚度 300~900m。主要构造线呈北西向,且后期多被北东向断裂所改造。

区内断裂构造发育,控制性断裂主要为北北西与北北东向大断裂,它们之间相互切割,将区内分割成枝江凹陷、荆门地堑、乐乡关地垒、汉水地堑、京山凸起、江陵凹陷、丫角~新沟凸起、潜江凹陷等八个构造单元。场区属江陵凹陷,无全新断裂构造通过。

(2) 区域地下水类型

根据调查报告并依据地下水含水介质、赋存条件及水动力特征,区域地下水类型划分为上层滞水和孔隙承压水。

上层滞水:含水层主要为人工填土,广泛分布于区内,含水性、透水性较差,无统一地下水位、且易遭受污染。其下部的粘性土为相对隔水层。勘察时测得其上层滞水水位埋深为 0.3~0.8m,相应高程为 28.70m~29.88m。

第四系全新统砂、上更新统下部的冲积细砂卵石孔隙承压水。主要赋存于长江河床相冲积砂层(Q4al);上更新统下部的冲积砂卵石层(Q3al)中,该层厚度较大,广泛分布于长江1级阶地,富水性中等-丰富,受长江水及上层滞水越流补给。勘察时值丰水期,测得其承压水水位标高为28.5m。

(3) 地下水补径排关系

区域上层滞水主要接受大气降水补给,径流以垂直运动为主,主要的排泄方式为 蒸发及就近向附近地表水体侧向径流排泄。其下部粘性土层为相对隔水层,由于相对

隔水层具有不均一性,局部可越流补给孔隙承压水。

孔隙承压水的补给来源主要为长江水侧向径流补给及上覆松散覆盖层的上层滞水越流补给,由于相对隔水层的存在,大气降水不易直接垂直入渗补给孔隙承压水。孔隙承压水与长江水水力联系密切,呈互补关系。丰水期,长江水位高于承压水位,长江水补给孔隙承压水含水层,丰水期水力梯度 0.27‰~0.6‰; 枯水期长江水位低于承压水位,承压含水层中的地下水向长江排泄,枯水期水力梯度 0.12‰~0.52‰。承压水径流一般垂直长江河床侧向径流运动,地下水流速缓慢,径流条件总体较差。孔隙承压水的排泄方式主要是向邻区侧向径流排泄和人工开采排泄。

(4) 场地地层分层

根据钻探揭露及室内土工试验成果,在勘探深度范围内,场地地层自上而下共分为8大层。

- ①层素填土第四系人工堆积(Q ml),杂色,松散,稍湿,主要成份以粉质粘土、粉土为主,表部含少量碎石。该层于勘察场区大部地段分布,仅于水上勘探孔控制范围内缺失。厚 0.4m~1.6m。
- ②层粉质粘土夹粉土 第四系全新统冲积层(Q4 al),褐色,湿,主要以粉质粘土为主,呈可塑,干强度中等、韧性中等,层间夹有粉土及粉砂。该层于场区内多分布稳定,亦于水上勘探孔控制范围内缺失。该层层顶埋深为 0.4m-1.6m,厚为 0.9m-3.3m。
- ③层 淤泥质粉质粘土 第四系全新统冲积层(Q4 al),灰褐色,饱和,软塑-流塑,干强度低,韧性低,具淤泥臭味,含少量植物腐植物。有机质含量为0.5%-2.7%。该层于场区内分布不稳定,于局部地段缺失,该层层顶埋深为0.3m~4.0m,厚0.5m~2.9m。
- ④层 粉质粘土 第四系全新统冲积沉积(Q4 al),褐色,湿,软塑-可塑,干强度中等,韧性低,层间局部夹少量粉土薄层。该层于场区内分布稳定,层顶埋深为0.9m~6.0m,厚1.2m-3.4m。
- ⑤层 粉土夹粉质粘土 第四系全新统冲积沉积(Q4 al),褐色,湿,以粉土为主,呈稍密,层间不均匀夹有粉质粘土及粉砂层,摇震反应中等。该层于场区内分布多较稳定,仅于 K1,C2 勘探孔控制范围内缺失。该层层顶埋深为 2.4m~9.1m,厚 2.2m~4.6m。
 - ⑥层 粉砂 第四系全新统河流冲积沉积(Q4al),灰色,饱水,松散,主要颗粒

矿物成份以石英、长石、云母为主。层间局部夹有粉土层,摇震反应迅速。该层于场区分布稳定。层顶埋深为 3.8m~13.2m, 厚 3.8m~11.1m。

⑦层圆砾第四系上更新统冲洪积形成(*Q3 al+pl*),杂色,稍密,主要成分为石英岩、火成岩、硅质岩等,卵石磨圆度较好,呈次圆状,分选性好。粒径多为 2~4cm,其中大于 2mm 颗粒含量占总质量的 58%,粒间充填为粉、细砂。该层于场区分布稳定,本次勘察仅部分钻孔揭穿该层,该层层顶埋深为 14.9m~17.4m,厚 1.8m~3.4m。

⑧层 卵石 第四系上更新统冲洪积形成(*Q3 al+pl*),杂色,中密,主要成分为石 英岩、火成岩、硅质岩等,卵石磨圆度较好,呈圆-次圆状,分选性好。粒径多为2~6cm,其中大于2cm 颗粒含量占总质量的58.4%,粒间充填为粉、细砂。该层分布稳定,厚度大。本次勘察仅部分钻孔揭露该层,最大揭露厚为5.7m。

5.1.5.3 包气带防污性能

包气带是连接大气和地下水的重要纽带,在大气降水补给地下水以及地下水通过包气带蒸发过程中扮演着重要的角色。包气带特别是包气带上部的土壤是植物赖以生长的基础,是人类生存环境的重要组成部分。

如果包气带受到污染,将对周围植物造成影响,并且包气带污染会进一步引起地下水污染,因此应对评价区包气带防污性能进行分析,为进一步采取预防措施提出科学依据。

污染物从地表进入潜水含水层,必然要经过包气带,包气带的防污性能强弱直接 影响着地下水的污染程度和状况。通常包气带的防污性能与包气带的岩性、结构、厚 度以及地形坡度等有着密切的联系。其中,岩性和厚度对包气带防污性能影响较大, 包气带土壤沉积物中的粘土矿物和有机碳在吸附无机离子组分和有机污染物过程中发 挥着非常重要的作用,特别是有机污染物,很容易分配到有机碳中,在一定条件下又 能被大量粘土矿物所吸附。包气带土层对污染物的吸附可以延滞有机污染物向地下水 中迁移,且包气带的厚度越大,污染物越难以迁移进入地下水。因此,包气带土层的 粘土矿物、有机碳的含量、厚度,在很大程度上制约着评价区浅层地下水受地表污染 源的影响程度。

根据评价区的勘查资料,评价区包气带岩性主要为粘土及粉质粘土。由于评价区包气带岩性多为粘土和粉质粘土,粘土和粉质粘土吸附阻滞污染物迁移能力较强,因

此评价区包气带防污性能中-强。

5.1.5.4 影响途径分析

污染物从污染源进入地下水所经过路径称为地下水污染途径,地下水污染途径是 多种多样的。根据工程所处区域的地质情况,本项目可能对下水造成污染的途径主要 有:

- ①污水管道、废水收集罐等输送或存储设施通过地面渗漏染浅层下。
- ②化学品仓、废弃物处置中心等堆放场所不规范,基础防渗措施不到位,通过下 渗污染浅层地下水。
- ③本项目向大气排放的污染物可能由于重力沉降、雨水淋洗等作用而降落地面, 下渗污染浅层地水。

根据类比调查,在装置区、管网接口等处,生产装置的开、停车及装置和管线维修时均有可能产生废水的无组织排放。一般厂区事故排放分为短期大量排放及长期少量排放两类。短期大量排放(如突发性事故引起的管线破裂或管线阻塞而造成逸流),一般能及时发现,并可通过风险应急池回收处理,因此,一般短期排放不会造成大范围地下水污染;而长期较少量排放(如电镀废水深度处理车间各水池无组织排放等),一般较难发现,

长期泄漏可对地下水产生一定影响。如果建设期施工质量差或建成投产后管理不善,都有可能产生废水的无组织泄漏,对地下水水质产生不利影响,特别是同一地点的连续泄漏,对地下水水质的不利影响会更加严重。

根据工程所处区域的地质情况,本项目主要地下水污染途径为包气带渗入。

5.1.5.5 地下水环境影响预测

本项目地下水评价等级为三级。根据《环境影响评价技术导则 地下水环境》 (HJ610-2016) 相关要求:根据 GB16889、GB18597、GB18599、GB50934 标准进行 地下水污染防渗措施的建设项目,可不进行正常状况情景下的预测。因此正常工况下 仅对地下水环境影响进行分析,对非正常工况进行地下水影响预测分析。

5.1.5.5.1 正常工况地下水环境影响分析

本项目建成投产后,生产生活废水依托华中表处园电镀废水深度处理车间处理达

标后回用或排放。废水的收集与排放全部通过管道进行,不直接和地表联系,因而不 会通过地表水和地下水的水力联系引起地下水水质变化。

本项目在建设阶段,在充分做好污水管道的防渗处理,杜绝污水渗漏,确保污水 收集处理系统衔接良好,严格用水管理,防止污水"跑、冒、滴、漏"现象发生,可 以很大程度的消除污染物排放对地下水环境的影响。

项目生产区、危险废物暂存库、原料库等均按照《环境影响评价技术到则 地下水环境》(HJ610-2016)重点防渗区要求建设,确保防渗层的渗透系数满足相应的防护标准要求,防止污染地下水。正常情况下,对地下水的污染主要是由于污染物迁移穿过包气带进入含水层造成。

企业根据车间分布特点开展分区防治,在确保各项防渗措施得以落实,并加强维护和车间内环境管理,结合华中表处园监测计划,定期开展下游地下水水质监测,制定和落实地下水风险事故应急响应预案的前提下,可有效控制厂区内的废水污染物下渗现象,避免污染地下水,因此正常工况项目运营对区域地下水环境影响较小。

5.1.5.5.2 非正常工况地下水环境影响分析

①预测情景及源强

本次地下水预测主要针对比较容易发生泄漏,且影响较大的单元,确定的地下水事故情景为:废水收集罐废水泄露。根据废水成分特征标准,进入地下含水层中特征污染物主要为铬、镍、锌等。泄露浓度采用废水进水浓度核算。

根据《给水排水构筑物工程施工及验收规范》(GB50141-2008),地下水预测源强参数见下表。

污染物	渗漏面积(m²)	漏损率 (%)	漏损强度 (L/m²·d)	泄露浓度(mg/L)
总铬	0.785	1	20	13.7
镍	0.785	1	20	35
锌	0.785	1	20	481

表 5.1-19 事故工况下地下水预测源强参数表

②预测模式

采用地下水导则推荐一维弥散解析模式来预测。

连续污染源解析法为:

$$\frac{C}{C_0} = \frac{1}{2} erfc(\frac{x - ut}{2\sqrt{D_L t}}) + \frac{1}{2} e^{\frac{itx}{D_L}} erfc(\frac{x + ut}{2\sqrt{D_L t}})$$

式中: x—预测点距污染源强的距离, m;

t—预测时间,d;

C—t 时刻 x 处的污染物浓度, mg/L;

C₀—地下水污染源强浓度, mg/L;

u---水流速度, m/d:

erfc () — 余误差函数。

瞬时污染源解析法:

$$C(Xt) = \frac{m/w}{2n\sqrt{\pi D_L t}} e^{\frac{(X-ut)^2}{4D_L t}}$$

C一预测地下水污染场浓度, mg/L;

C₀一地下水污染场源, mg/L;

DL一弥散系数, m/d;

u一水流速度, m/d;

exfc-余误差函数。

t—时间, d:

X一泄漏点的距离, m;

m一注入量,g;

w一横截面面积, m²;

n-有效孔隙度,无量纲。

π ---圆周率。

计算参数根据场地地质勘查数据并根据含水层中砂砾石颗粒大小、颗粒均匀度和 排列情况类比取得的水文地质参数,详见下表。

地下水实际流速的确定按下列方法取得:

 $U=K\times I/n$

 $D=a_L\times U^m$

其中: U—地下水实际流速, m/d;

K—渗透系数, m/d;

I—水力坡度, ‰;

n—孔隙度;

表 5.1-20 地下水含水层参数

项目	渗透系数 K (cm/s) *	水力坡度 I (‰)	孔隙度 n
项目建设区含水层	9.26×10 ⁻⁴	0.5	0.58

注: K*参考《江汉-洞庭平原流域水文模型与地下水数值模型耦合模拟研究》中区域孔隙潜水含水层(Q_h)渗透系数为 0.54m/d; I: 项目选址区水力坡度为 0.3‰~0.5‰,本次评价取 0.5‰; 孔隙度 n 根据土壤性质监测结果为 0.58。

根据国内外测得的各种土质类型的弥散系数参考表如下:

表 5.1-21 弥散系数参考表

含水层类型	纵向弥散系数(m²/d)	横向弥散系数(m²/d)	来源
细砂	0.05~0.5	0.005~0.01	
中粗砂	0.2~1	0.05~0.1	国内外经验系数
砂砾	1~5	0.2~1	

参数计算结果见表 5.1-20。

表 5.1-22 计算参数一览表

项目	地下水实际流速(m/d)	弥散系数 D(m²/d)
项目建设区含水层	6.9×10 ⁻⁴	0.5

③预测时段

根据《环境影响评价技术导则 地下水环境》(HJ 610-2016) 9.3 要求, 对项目 100d、1000d 进行预测评价。

④预测结果

a.含铬废水泄露

废水收集罐区防渗膜破损面积为 1%状态下,连续泄漏含铬污染物 100 天,下渗废水主要污染范围在下渗点下游 0~50m, Cr 浓度范围 0mg/L~13.7mg/L,超过废水收集罐区下游 50m 后,含铬废水渗漏对地下水基本无污染。

废水收集罐区防渗膜破损面积为 1%状态下,连续泄漏含铬污染物 1000 天,下渗废水主要污染范围在下渗点下游 0~270m, Cr 浓度范围 0mg/L~13.7mg/L,超过废水收集罐区下游 270m 后,含铬废水渗漏对地下水基本无污染。

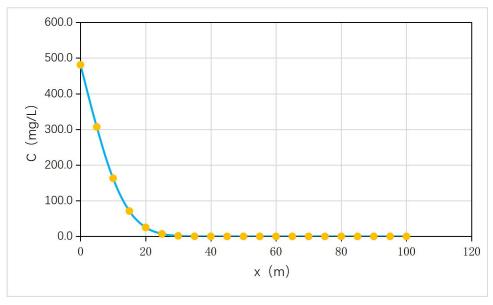


图 5.1-7 连续泄漏 100 天铬污染扩散距离图

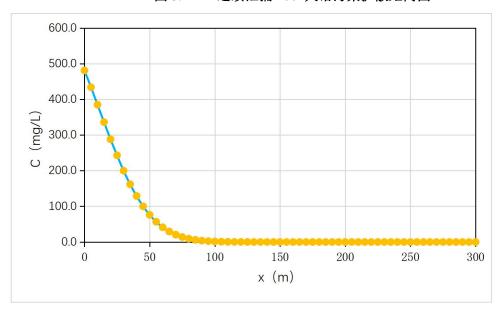


图 5.1-8 连续泄漏 1000 天铬污染扩散距离图

b.含镍废水泄露

废水收集罐区防渗膜破损面积为 1%状态下,连续泄漏含镍污染物 100 天,下渗废水主要污染范围在下渗点下游 0~50m, Ni 浓度范围 0mg/L~35mg/L,超过废水收集罐区下游 50m 后,含镍废水渗漏对地下水基本无污染。

废水收集罐区防渗膜破损面积为 1%状态下,连续泄漏含铬污染物 1000 天,下渗废水主要污染范围在下渗点下游 0~270m,Ni 浓度范围 0mg/L~35mg/L,超过废水收集罐区下游 270m 后,含镍废水渗漏对地下水基本无污染。

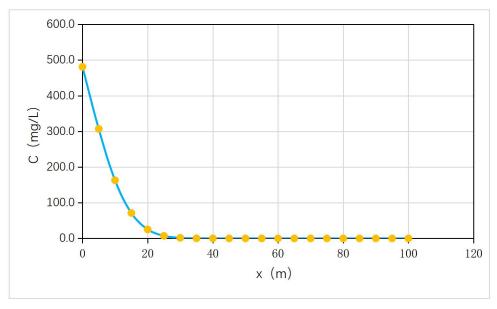


图 5.1-9 连续泄漏 100 天镍污染扩散距离图

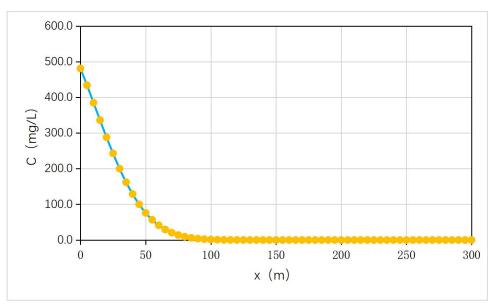


图 5.1-10 连续泄漏 1000 天镍污染扩散距离图

c.含锌废水泄露

废水收集罐区防渗膜破损面积为 1%状态下,连续泄漏含锌污染物 100 天,下渗废水主要污染范围在下渗点下游 0~55m, Zn 浓度范围 0mg/L~481mg/L,超过废水收集罐区下游 55m 后,含锌废水渗漏对地下水基本无污染。

废水收集罐区防渗膜破损面积为 1%状态下,连续泄漏含锌污染物 1000 天,下渗废水主要污染范围在下渗点下游 0~270m, Zn 浓度范围 0mg/L ~481mg/L,超过废水收集罐区下游 270m 后,含锌废水渗漏对地下水基本无污染。

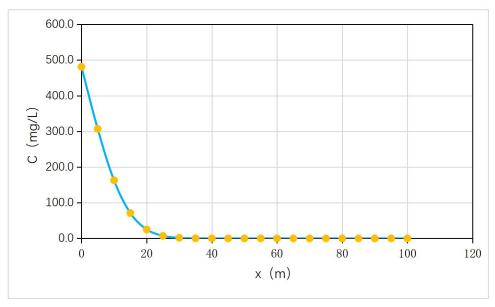


图 5.1-11 连续泄漏 100 天锌污染扩散距离图

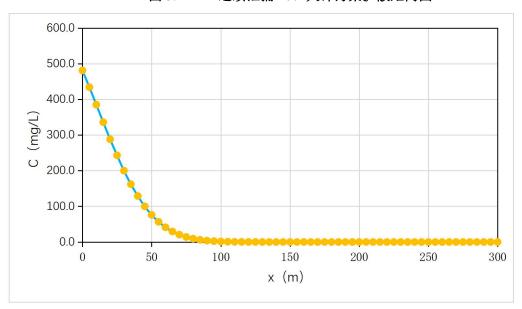


图 5.1-12 连续泄漏 1000 天锌污染扩散距离图

5.1.5.6 地下水环境影响结论

项目基岩不具备防渗性能,需对项目场地采取必要的防渗措施。正常工况下,在确保各项防渗措施得以落实,并加强维护和车间环境管理,可有效控制车间内和废水 收集罐区的废水污染物下渗现象,避免污染地下水,因此正常工况项目运营不会对区域地下水环境产生明显影响。从地下水环境保护角度看,其影响是可以接受的。

事故工况下,车间内生产电镀废水深度处理车间水池防渗膜破损面积为1%状态下,废水下渗,地下水中锌、铬、镍的最大浓度均出现在排放泄漏点附近,影响范围

内锌、铬、镍浓度随时间增长而升高。根据模型预测,下渗废水中锌、铬、镍影响范围均为100 天扩散到下游50m,1000 天将扩散到下游270m,对下游地下水产生污染。 事故工况下,废水下渗对地下水环境造成污染,建设单位应确保各防渗措施得以落实,定期检查维护,加强管理,杜绝事故发生。

5.1.6 土壤环境影响分析

5.1.6.1 影响识别

(1) 废气对土壤环境的影响

污染物质来源于被污染的大气,污染物质主要集中在土壤表层,其主要污染物是废气中的 HCl。HCl 在空气中由于降雨的作用会随着雨水进入到土壤环境,导致土壤酸化。

(2) 废水对土壤环境的影响

若本项目生产废水和生活污水未经处理直接排放,或发生泄漏,致使土壤受到重 金属、无机盐、有机物和病原体的污染。

本项目废水收集输送采用密封管道,进入电镀废水深度处理车间处理,因此正常运行情况下对土壤无影响。

(3) 固体废物对土壤环境的影响

固体废物在储存过程中渗漏进行土壤,致使土壤受到重金属、无机盐、有机物的污染。本项目固体废物储存场所按要求进行了防渗,因此正常运行情况下对土壤无影响。

因此本次土壤评价正常工况下主要考虑废气通过大气沉降对土壤的影响和非正常工况下废水中重金属污染物渗漏对土壤的影响。

不同时段	污染影响型					
小问 的权	大气沉降	地面漫流	垂直流入	其他		
建设期	/	/	/	/		
服务期	√	/	√	/		
服务期满	/	/	/	/		

表 5.1-23 建设项目土壤环境影响类型与影响途径表

表 5.1-24 污染型建设项目土壤环境影响源及影响因子识别表

V-1 3/4 MZ:		いたかなな	\= \st 1\cdot \=	# CD Z
污染源	工艺流程/节点	万染途 径	污染指标	特征因子

301#厂房烟道 (正常工况)	电镀	大气沉降	0.251 t/a	HCl
301#厂房 4 楼车 间	电镀	大气沉降	0.05 t/a	HC1
车间废水罐 (非正常工况)	废水存储	垂直流入	13.7mg/L	总铬

5.1.6.2 土壤理化性质

根据 2019 年 11 月 19 日土壤监测结果,区域土壤理化性质见下表:

监测结果 监测项目 土壤 4# (0~0.2m) 土壤 10#(0~0.2m) 颜色 黄褐色 黄褐色 质地 硬塑 硬塑 砂砾含量 2%~3% <1% 无 无 其他异物 pH 值(无量纲) 8.53 8.28 氧化还原电位(mV) 650.15 639.02 饱和导水率 (cm/s) 1.42×10^{-7} 1.06×10^{-7} 土壤容重(g/cm³) 1.15 1.35 50 孔隙度(%) 58

表 5.1-25 项目选址区域土壤理化性质

5.1.6.3 等级判定

(1) 项目类别

本项目为有电镀工艺的金属制品制造项目,为污染影响型项目。对照《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018)附录 A,本项目为 I 类项目。

(2) 占地大小

本项目占地 2567m², 主要为永久占地, 属于小型。

(3) 项目所在地土壤及周边土壤敏感程度

项目所在地土壤及周边土壤均为工业园用地,周边不存在耕地、园地、牧草地、饮用水水源地或居民区、学校、医院、疗养院、养老院等土壤环境敏感目标的及其他土壤环境敏感目标的,项目所在区域土壤属于"其他情况",土壤环境敏感程度判定为"不敏感"。

(4)等级判定

^{4#}土壤监测点位的 pH 值为 8.53, 说明区域部分土壤轻度碱化。

最终确定本项目土壤环境影响评价工作等级为二级。

占地规模 II类 III类 I类 评价工作等级 大 中 小 大 中 大 中 小 敏感程度 敏感 一级 一级 一级 二级 二级 二级 三级 三级 三级 较敏感 一级 二级 二级 二级 三级 三级 三级 一级 不敏感 一级 二级 二级 二级 三级 三级 三级

表 5.1-26 污染影响型评价工作等级划分表

5.1.6.4 预测评价范围

同现状调查范围一致(项目场地内及占地范围外 0.2km 范围内)。

5.1.6.5 预测评价时段

运行期 1a、5a、10a。

5.1.6.6 预测与评价因子

根据本项目污染物排放特征,对比《土壤环境质量 建设用地土壤污染风险管控标准》(GB36600-2018),选取 HCI、铬(六价)为关键预测因子。

5.1.6.7 预测评价标准

根据 HJ 964-2018 附录表 D.2 中 5.5≤pH≤8.5 时,土壤无酸化或碱化。

铬(六价)执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地筛选值限值,分别为: 5.7mg/kg。

5.1.6.8 HCl 沉降引起土壤酸化影响预测分析

(1) 预测方法

根据《环境影响评价技术导则土壤环境(试行)》(HJ964-2018)附录 E.1 方法一,单位质量土壤中某种物质的增量可采用下式计算:

$$\Delta S = n(I_s - L_s - R_s)/(\rho_b \times A \times D)$$

式中: ΔS ——单位质量表层土壤中某种物质的增量,g/kg。表层土壤中游离酸或游离碱浓度增量,mmol/kg。

Is——预测评价范围内单位年份表层土壤中某种物质的输入量,g。

Ls——预测评价范围内单位年份表层土壤中某种物质经淋溶排出的量, g。

Rs——预测评价范围内单位年份表层土壤中某种物质经径流排出的量, g。

ρ_b——表层土壤容重, kg/m³。

A——预测评价范围, m²。

D——表层土壤深度,一般取 0.2m,可根据实际情况调整。

n——持续年份, a。

单位质量土壤中某种物质的预测值可根据其增量叠加现状值进行计算,如下式:

 $S = Sb + \Delta S$

式中: Sb——单位质量表层土壤中某种物质的现状值, g/kg。

S——单位质量表层土壤中某种物质的预测值,g/kg。

pH 预测值,如下式:

 $pH = pH_b + \Delta S/BCpH$

式中: pHb——土壤 pH 现状值。

BC_{pH}——缓冲容量, mmol/(kg.pH)。

(2) 预测结果及分析

项目 污染物 Is Ls Rs D Δ S Sb pH/S Α n 301000 1250 | 1079365 0.001115471 0 0 0 0.2 1 8.412 计算 HC1 301000 0 1250 | 1079365 | 0.2 0.005577353 0 8.411 值 301000 0 0 1250 | 1079365 | 0.2 10 0.011154707 0 8.409

表 5.1-27 项目土壤环境影响预测结果一览表

预测结果表明,项目运行期第 1 年、第 5 年、第 10 年土壤中 pH 的环境影响预测叠加值分别为 8.412、8.411,8.409。对比《环境影响评价技术导则土壤环境(试行)》 (HJ964-2018)附录 D.2 土壤酸化、碱化分级标准,本项目叠加值为无酸化或碱化,土壤环境影响小。

5.1.6.9 含铬污染物泄露影响预测分析

(1) 预测方法

预测方法参见《环境影响评价技术导则土壤环境》(HJ 964-2018)附录 E 中方法二"本方法适用于某种污染物以点源形式垂直渗入土壤环境的影响预测,重点预测污

染物可能影响到的深度。"采用一维非饱和溶质运移模型预测方法。

一维非饱和溶质垂向运移控制方程:

$$\frac{\partial(\theta c)}{\partial t} = \frac{\partial}{\partial z} \left(\theta D \frac{\partial c}{\partial z} \right) - \frac{\partial}{\partial z} (qc)$$

式中: C--污染物介质中的浓度, mg/L;

D——弥散系数, m²/d:

q——渗流速率, m/d;

Z——沿 z 轴的距离, m;

t——时间变量, d:

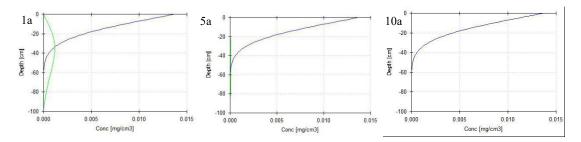
θ ——土壤含水率, %。

①初始条件:

$$c(z,t) = 0$$
 $t = 0$, $L \le z < 0$

- ②边界条件
- a. 第一类 Dirichlet 边界条件,其中第一个公式适用于连续点源情景,第二个公式适用于非连续点源情景。

$$c(z,t) = c_0 t > 0, z = 0$$


$$c(z,t) = \begin{cases} c_0 & 0 < t \le t_0 \\ 0 & t > t_0 \end{cases}$$

b. 第二类 Neumann 零梯度边界。

$$-\theta D \frac{\partial c}{\partial z} = 0$$
 $t > 0$, $z = L$

(2) 预测结果及分析

土壤中铬随深度变化曲线见图 8。

本项目选择一维非饱和溶质运移模型预测对含铬废水在非正常工况下发生泄漏后,预测 1a、5a、10a 时段的特征污染因子的在土壤中垂线运移情况。由预测结果可知,非正常工况下,发生泄露后,污染因子总铬浓度垂向污染深度为约 60cm,应尽量杜绝含重金属污染物泄露事故,以免发生土壤污染。

5.1.6.10 土壤环境影响预测评价结论

建设项目运营期,盐酸雾沉降不会造成评价区域范围内土壤酸化,在按要求采取防渗措施后,正常工况下,废水、危废等污染物不会发生泄露,对土壤环境无影响。在非正常工况下,含铬污染物发生泄露后,垂向污染深度为约60cm,应尽量杜绝含重金属污染物泄露事故,以免发生土壤污染。

	工作内容		完成	情况		备注
	影响类型	污染景	污染影响型☑;生态影响型□;两者兼有□			
	土地利用类型	建计	没用地☑;农用:	地□ ; 未利用均	b □	土地利用 类型图
星么	占地规模		(0.352	8) hm ²		
影响	敏感目标信息	敏感目标()、方位()、距离()				
识	影响途径	大气沉降回; 地	且面漫流口;垂直	五入渗口;地下	水位口; 其他口	
別	全部污染物		HC1、	总铬		
נית	特征因子		HC1、	总铬		
	所属土壤环境影响 评价项目类别	I				
	敏感程度		敏感□; 较敏	感□;不敏感☑		
	评价工作等级					
	资料收集	a) ∅; b) □; c) □; d) ∅				
现业	理化性质	土体构型为 A-	土体构型为 A-P-Wc-W、A-P-Wc-C。耕作层厚 11-23cm,平 均 16cm			同附录 C
状 调			占地范围内	占地范围外	深度	点位布置
查	现状监测点位	表层样点数	4	2	0.2m	图图
点		柱状样点数	3	1	3.0	[2]
容	现状监测因子			乙烷,1,1-二氯乙	7. 1,2- 二	

表 5.1-28 土壤环境影响自查表

		氯乙烷,1,1,2,2 四氯乙烷,四氯乙烯,1,1,1-三氯乙烷,1,1,2- 三 氯乙烷,三氯乙烯,1,2,3-三氯丙烷,氯乙烯,苯,氯苯、1,2-					
		二氯苯,1,4-二氯苯,乙苯,苯乙烯,甲苯,间二甲苯+对二甲苯,邻二甲苯,硝基苯,苯胺,2-氯酚,苯并[a]蒽, 苯并[a]					
		比,本升[b]灭恩,	苯并[k]荧蒽,窟,二	本升[a,h]恩, 印升			
			[1,2,3-cd]芘,萘				
现	评价因子		同现状监测因子				
状	评价标准	《土壤环境质量建设用地土壤污染风险管控标准》					
评	一	(GB3660					
价	现状评价结论		达标				
影	预测因子		HCl				
响	预测方法	附录	附录 E☑; 附录 F□其他 ()				
预	预测分析内容	影响	影响范围() 影响程度(√)				
测	预测结论	达标结论: a) ☑;	达标结论: a) □; b) □; c) □ 不达标结论: a) □; b) □				
防	防控措施	土壤环境质量现状保	土壤环境质量现状保障区源头控制区;过程控制口;其他()				
治	跟踪监测	监测点数	监测指标	监测频次			
措	以	电镀车间附近					
施	信息公开指标	检测报告					
分 1.	"口"头与速度。可,	八头山家植写话	"夕冰" 4世 44 1 大。	b 家 注 2			

注 1: "口"为勾选项,可√; ()为内容填写项; "备注"为其他补充内容。 注 2:需要分别开展土壤环 境影响评价工作的,分别填写自查表。

5.1.7 水生态环境影响评价

根据华中表处园环评报告,华中表处园生产废水中排放的重金属预测浓度能够满足《地表水环境质量标准》III 类标准要求,且占标率较低,说明其重金属排放对下游水体水质影响很小。

华中表处园排污口下游 10km 范围内不存在自然保护区、水产种质资源保护区、 重要鱼类"三场"及其它重要水生生物的主要栖息水域、集中式饮用水水源保护区等 水生态环境敏感区,因此,华中表处园废水中重金属排放对区域重要生态功能区与重 要水生生物的影响有限。

华中表处园排污口位于荆州市城区集中式饮用水水源保护区下游,距离华中表处园排污口最近的柳林水厂饮用水水源保护区二级保护区下界距离排污口直线距离约4km,周边区域居民用水全部由荆州市市政自来水,取水水源不受华中表处园排污影响。

综上,华中表处园重金属排放对下游江段水生生态将造成一定的影响,但由于下游江段水体水质能够满足水体功能区标准,没有水生态环境敏感区,也不影响周边居民用水水质。因此,本项目废水排放对排污口下游水体水生态的影响可以接受。

华中表处园应根据相关主管部门要求,必要时委托有资质单位对生态现状进行调查,必要时还应委托有资质单位对底泥开展监测,编制生态环境专题影响报告。

5.2 施工期环影响评价

本项目主体工程及主要公辅工程依托华中表处园,主要是车间装修以及车间生产设备安装,上述施工过程污染源分析如下:

5.2.1 大气环境影响评价

施建筑装修产生的粉尘主要是水泥工工位的石灰石粉尘、木工工位的木粉尘、凿墙等活动产生的粉尘、物料运输车辆噪声的道路扬尘。

装修场地的扬尘与许多因素有关,如防尘措施、风速等。目前,建筑四周门窗均 已安装,必要时应关闭门窗装修,因此项目产生的粉尘对周边环境影响较小。

造成室內空气污染的主要来源是建筑装修过程中使用的建筑材料和装修材料,主要包括油漆、胶合板、刨花板、泡沫填料、内墙涂料、塑料贴面、黏合剂、稀释剂等材料,这些材料中可能含有甲醛、甲苯、二甲苯、乙醇、氯仿类有机蒸气及氡、氨等,将对人体健康造成极大的危害。因此,在选择装修材料和涂料的时候应选用对环境污染小、有益于人体健康的建筑材料产品,建设单位只要采用符合标准的建筑材料,保证建材、有机溶剂和辅助添加剂无毒无害,做到健康设计原则,基本不会对环境产生较大的影响。

5.2.2 地表水环境影响评价

本项目装修人员相对较少,主要从事装修工作,不在项目场地内住宿,且周边区域市政设施完善,本项目装修人员产生的如厕等生活污水,依托华中表处园建成的配套治理设施。

建筑装修会产生少量废水,主要来源于对装修设备和建筑内部地面的冲洗废水,其污染物主要为泥沙和石油类,排放量很少。其主要以蒸发、散失为主,基本不排放,影响很小。

5.2.3 声环境影响评价

本项目装修期产生的噪声主要为凿打(内墙)声、电钻声和物料撞击声。虽然该 影响随着装修的结束将自动消除,影响时间短暂,但是由于装修期产生的噪声强度较 大,故影响也比较大,应予高度重视。 项目装修中应合理安排装修器械的位置,尽量远离办公区域,同时尽量避免在同一时间集中使用大量的高噪声机械设备;关闭门窗作业,同时要加强装修作业管理,避免在夜间(22:00-6:00)装修。

5.2.4 固体废物环境影响评价

装修建筑垃圾的组成主要为混凝土块、砖块、灰土、陶瓷、木块、刨花、胶合板等,建筑垃圾应单独收集并统一运送到余泥渣土排放管理部门指定的受纳场处置。施工人员生活垃圾收集后交由环卫部门进行清运处理。综上,装修期固体废物对周边环境影响不大。

6 环境风险评价

6.1 环境风险评价的目的和重点

6.1.1 环境风险评价的目的

根据国家环境保护部《关于进一步加强环境影响评价管理防范环境风险的通知》 (环发〔2012〕77号〕及《建设项目环境风险评价技术导则》(HJ169-2018)中相关 要求,结合该项目工程分析,本评价按照上述文件及风险评价导则的相关要求,采用 项目风险识别、源项分析和后果分析等方法进行环境风险评价,了解其环境风险的可 接受程度,提出减少风险的事故应急措施及应急预案,为工程设计和环境管理提供资 料和依据,以期达到降低危险,减少危害的目的。

6.2 环境风险调查

6.2.1 环境风险源调查

(1) 危险物质情况

本项目涉及的化学品包括盐酸、硝酸、镍、铬等,对比《建设项目环境风险评价技术导则》(HJ 169-2018)附录 B,本项目存在的危险物质调查情况见表 6.2-1。

序 号	危险物质名 称	分布情况	仓库最大储存量 (kg)	生产线在线量(kg)	车间内最大储存量 (kg)
1	镍板	车间	7.5	2.5	10
2	氯化镍	车间	1	0.3	1.3
3	铬及其化合 物	车间	8.32	0.3	8.62
4	盐酸	车间	1000 (32%)	浓度<37%	1000
5	硝酸	车间	20	1	21
6	硫酸	车间	5	2.5	8
7	硫酸镍	车间	3	0.5	0.2
8	氰化钠	车间	1	0.3	0.2

表 6.2-1 项目危险物质调查情况表

各化学品的理化性质及危险特性详见附件。

(2) 生产工艺情况

对照《建设项目环境风险评价技术导则》(HJ 169-2018)附录 C表 C.1 行业及生产工艺,本项目所涉及的工艺为其他行业中"涉及危险物质使用、贮存的项目"。

6.2.2 环境敏感目标调查

本项目环境敏感目标调查情况见表 6.2-2。

表 6.2-2 环境敏感目标调查表

要素	序号	环境敏感点名称	方位	距离(m)	规模(户)	规模 (人)	属性	保护 级别
	1	麻林村	E、NE	560	68	306	居住	
	2	张毛台	NE	1440	4	20	居住	
	3	小曾家台	NE	1500	17	68	居住	
	4	曾家台	NE	2170	18	81	居住	
	5	青岗岭分场	NE	2175	120	569	居住	
	6	林家台	NE	2549	10	47	居住	
	7	陟屺桥	NE	2650	59	296	居住	
	8	左闸口	NW	1200	5	20	居住	
	9	小王家河	NW	1450	28	140	居住	
	10	魏家台	NWW	2450	58	265	居住	
	11	跃进村	SWW	2600	12	60	居住	
	12	新宿驾场	SW	2184	101	494	居住	空气量
 	13	竺桥社区居委会	SSW	2167		35	居住	
大气 环境	14	西湖分场	SE	2040	10	45	居住	
八 风险	15	原种分场	SE	2820	35	175	居住	
, ,,_	16	王拨台	SE	2855	15	70	居住	, ,
	17	万家台	SEE	1140	10	46	居住	
	18	姚家岭	SEE	1600	28	112	居住	
	19	筒家河	SEE	2100	30	138	居住	
	20	东郭家咀	NE	4545	20	86	居住	
	21	玉壶村	NE	3680	75	320	居住	
	22	观音垱镇	NE	4470	1000	4250	居住	
	23	白水村	NNW	3200	260	1170	居住	
	24	罗场镇	NNW	4000	1200	5560	居住	
	25	向湖村	NW	4300	48	200	居住	
	26	孙湖台	W	3400	280	1300	居住	
	27	王家台	SWW	3200	377	1885	居住	
	28	荆州市艺术高级	SWW	3450		800	教育	

		中学						
	29	跃进社区	SW	3800	890	5000	居住	
	30	常湾逸居	SW	4200	2000	9000	居住	
	31	黄渊村	S	4300	100	450	居住	
	32	西湖街道	SE	3000	500	2500	居住	
	33	岑河镇	SE	4470~5000	1000	5000	居住	
	34	南桥分场	SE	3870	45	180	居住	
	35	谷湖村	SEE	4000	39	200	居住	
	合计					40888		
地表	1	长江 (荆州城区)	W	12770	大流	可		III类
水环 境风 险	2	豉湖渠	N	300	小	可		V类
地下 水环 境风 险	项目所在区域			地下 水III 类				

6.3 风险等级判定

6.3.1 危险物质及工艺系统危险性分级

6.3.1.1 建设项目 Q 值确定

按照 HJ 169-2018《建设项目环境风险评价技术导则》,计算所涉及的每种危险物质在厂界内的最大存在总量与附录 B 中对应临界量的比值 Q。当存在多种危险物质时,则按下公式计算物质总量与其临界值比值 (Q):

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + \dots + \frac{q_n}{Q_N}$$

式中: q_1 、 q_2 、……、 q_n 一每种危险物质的最大存在量,t;

 Q_1 、 Q_2 、……、 Q_n 一每种危险物质的临界量,t。

表 6.3-1 建设项目 Q 值确定表

序号	危险物质名称	最大储存量(t)	临界量(t)	qi/Qi
1	镍板	0.01	0.25	0.04
2	氯化镍	0.001	0.25	0.004
3	铬及其化合物	0.008	0.25	0.032

4	盐酸	1	7.5	0.133
5	硝酸	0.021	7.5	0.003
6	硫酸	8	10	
7	硫酸镍	0.2	0.25	
8	氰化钠	0.2	0.25	
小计			0.212	

由上表可知, Q<1, 本项目环境风险潜势为 I。

6.3.1.2 建设项目 M 值确定

按照《建设项目环境风险评价技术导则》(HJ 169-2018)(以下简称"导则"),分析项目所属行业及生产工艺特点,按导则表 C.1 评估生产工艺情况。具有多套工艺单元的项目,对每套生产工艺分别评分并求和。将 M 划分为(1)M>20; (2)10< M≤20; (3)5<M≤10; (4)M=5,分别以 M1、M2、M3 和 M4 表示。

表 6.3-2 建设项目 M 值确定表

序号	工艺单位名称	生产工艺	数量/套	M 分值
1	储存区	危险物质储存	1	5
∑M=5				

由上表可知,本项目为 M4。

6.3.1.3 危险物质及工艺系统危险性分级

根据危险物质数量与临界量比值(Q)和行业及生产工艺(M),按照下表确定危险物质及工艺系统危险性等级(P),分别以P1、P2、P3、P4表示。

表 6.3-3 危险物质及工艺系统危险性等级判断 (P)

危险物质数量	行业及生产工艺 (M)			
与临界量比值(Q)	M1	M2	M3	M4
Q≥100	P1	P1	P2	Р3
10≤Q<100	P1	P2	Р3	P4
1≤Q<10	P2	Р3	P4	P4

对比上表可知,本项目危险物质及工艺系统危险性等级为 P4。

6.3.2 环境敏感性分级

(1) 大气环境敏感程度

依据环境敏感目标环境敏感性及人口密度划分环境风险受体的敏感性,共分为三种类型,E1为环境高度敏感区,E2为环境中度敏感区,E3为环境低度敏感区,分级原则见下表。

分级	大气环境敏感性		
E1	周边 5km 范围内居住区、医疗卫生、文化教育、科研、行政办公等机构人口总数大于 5万人,或其他需要特殊保护区域;或周边 500m 范围内人口总数大于 1000人;油气、化学品输送管线管段周边 200m 范围内,每千米管段人口数大于 200人		
E2	周边 5km 范围内居住区、医疗卫生、文化教育、科研、行政办公等机构人口总数大于 1万人,小于 5万人;或周边 500m 范围内人口总数大于 500 人,小于 1000 人;油气、化学品输送管线管段周边 200 m 范围内,每千米管段人口数大于 100 人,小于 200 人		
E3	周边 5km 范围内居住区、医疗卫生、文化教育、科研、行政办公等机构人口总数小于 1 万人;或周边 500m 范围内人口总数小于 500 人;油气、化学品输送管线管段周边 200m 范围内,每千米管段人口数小于 100 人		

表 6.3-4 大气环境敏感程度分级

对比周边敏感点调查,本项目厂址 5km 范围内人口数为 40888 人,大气环境敏感性分级为环境低度敏感区 E2。

(2) 地表水环境敏感程度

依据事故情况下危险物质泄漏到水体的排放点受纳地表水体功能敏感性,与下游环境敏感目标情况,共分为三种类型,E1为环境高度敏感区,E2为环境中度敏感区,E3为环境低度敏感区,分级原则见下表 6.3-5。其中地表水功能敏感性分区和环境敏感目标分级分别见表表 6.3-6 和表表 6.3-7。

环境敏感目标	地表水功能敏感性		
小児奴念日你	F1	F2	F3
S1	E1	E1	E2
S2	E1	E2	E3
S3	E1	E2	E3

表 6.3-5 地表水环境敏感程度分级

表 6.3-6 地表水功能敏感性分区

敏感性	地表水环境敏感特征	
敏感 F1	排放点进入地表水水域环境功能为II类及以上,或海水水质分类第一类;或以发生事故时,危险物质泄漏到水体的排放点算起,排放进入受纳河流最大流速时,24h流经范围内涉跨国界的	

较敏感 F2	排放点进入地表水水域环境功能为III类,或海水水质分类第二类;或以发生事故时,危险物质泄漏到水体的排放点算起,排放进入受纳河流最大流速时,24h流经范围内涉跨省界的
低敏感 F3	上述地区之外的其他地区

表 6.3-7 环境敏感目标分级

分级	环境敏感目标
S1	发生事故时,危险物质泄漏到内陆水体的排放点下游(顺水流向)10 km 范围内、近岸海域一个潮周期水质点可能达到的最大水平距离的两倍范围内,有如下一类或多类环境风险受体:集中式地表水饮用水水源保护区(包括一级保护区、二级保护区及准保护区);农村及分散式饮用水水源保护区;自然保护区;重要湿地;珍稀濒危野生动植物天然集中分布区;重要水生生物的自然产卵场及索饵场、越冬场和洄游通道;世界文化和自然遗产地;红树林、珊瑚礁等滨海湿地生态系统;珍稀、濒危海洋生物的天然集中分布区;海洋特别保护区;海上自然保护区;盐场保护区;海水浴场;海洋自然历史遗迹;风景名胜区;或其他特殊重要保护区域
S2	发生事故时,危险物质泄漏到内陆水体的排放点下游(顺水流向)10 km 范围内、近岸海域一个潮周期水质点可能达到的最大水平距离的两倍范围内,有如下一类或多类环境风险受体的:水产养殖区;天然渔场;森林公园;地质公园;海滨风景游览区;具有重要经济价值的海洋生物生存区域
S3	排放点下游(顺水流向)10km范围、近岸海域一个潮周期水质点可能达到的最大水平距离的两倍范围内无上述类型1和类型2包括的敏感保护目标

本项目废水排入华中表处园电镀废水深度处理车间,地表水功能敏感性分区为低敏感 F3,不存在环境敏感目标,地表水功能环境敏感性分级为 E3。

(3) 地下水

依据地下水功能敏感性与包气带防污性能,共分为三种类型,E1 为环境高度敏感区,E2 为环境中度敏感区,E3 为环境低度敏感区,分级原则见表 6.3-8。其中地下水功能敏感性分区和包气带防污性能分级分别见表表 6.3-9 和表 6.3-10。当同一建设项目涉及两个 G 分区或 D 分级及以上时,取相对高值。

表 6.3-8 地下水环境敏感程度分级

包气带防污性能	地下水功能敏感性			
区(中的行注形	G1	G2	G3	
D1	E1	E1	E2	
D2	E1	E2	E3	
D3	E2	E3	Е3	

表 6 3-9	地下水功能敏感性分区
1C 0.5-7	

敏感性	地下水环境敏感特征
敏感 G1	集中式饮用水水源(包括已建成的在用、备用、应急水源,在建和规划的饮用水水源)准保护区;除集中式饮用水水源以外的国家或地方政府设定的与地下水环境相关的其他保护区,如热水、矿泉水、温泉等特殊地下水资源保护区
较敏感 G2	集中式饮用水水源(包括已建成的在用、备用、应急水源,在建和规划的饮用水水源)准保护区以外的补给径流区;未划定准保护区的集中式饮用水水源,其保护区以外的补给径流区;分散式饮用水水源地;特殊地下水资源(如热水、矿泉水、温泉等)保护区以外的分布区等其他未列入上述敏感分级的环境敏感区 a
不敏感 G3	上述地区之外的其他地区
a"环境敏愿	这区"是指《建设项目环境影响评价分类管理名录》中所界定的涉及地下水的环境 知威区

敏感区_____

表 6.3-10 包气带防污性能分级

分级	包气带岩土的渗透性能
D3	Mb≥1.0m, K≤1.0×10-6cm/s, 且分布连续、稳定
D2	0.5m≤Mb<1.0m, K≤1.0×10 ⁻⁶ cm/s, 且分布连续、稳定 Mb≥1.0m, 1.0×10 ⁻⁶ cm/s <k≤1.0×10<sup>-4cm/s, 且分布连续、稳定</k≤1.0×10<sup>
D1	岩(土)层不满足上述"D2"和"D3"条件

Mb: 岩土层单层厚度。

K: 渗透系数。

本项目位于工业园区,周边不存在集中式饮用水水源等敏感目标,为不敏感 G3;根据调查,本项目厂址包气带岩土的渗透性能为 D2,因此地下水功能环境敏感性分级为 E3。

6.3.3 环境风险潜势分析

建设项目环境风险潜势划分为 I、II、III、IV/IV+级。根据建设项目涉及的物质和工艺系统的危险性及其所在地的环境敏感程度,结合事故情形下环境影响途径,对建设项目潜在环境危害程度进行概化分析,按照表 6.3-11 确定环境风险潜势。

表 6.3-11 建设项目环境风险潜势划分

环境敏感程度(E)	危险物质及工艺系统危险性 (P)						
环境敏感程度 (E)	极高危害(P1)	高度危害(P2)	中度危害(P3)	轻度危害(P4)			
环境高度敏感(E1)	IV+	IV	III	III			
环境中度敏感(E2)	IV	III	III	II			

环境低度敏感(E3)	III	III	II	I
注: IV+为极高环境原	《 险。			

本项目危险物质及工艺系统危险性分级为 P4;环境敏感性分级,本项目大气环境敏感性分级为 E2,地表水环境敏感性分级为 E3,地下水环境敏感性分级为 E3。对比上表,大气环境风险潜势为 II 级,地表水环境风险潜势为 I 级,项目环境风险潜势综合等级为 II 级。

6.3.4 环境风险等级判定

环境风险评价工作等级划分为一级、二级、三级。根据建设项目涉及的物质及工艺系统危险性和所在地的环境敏感性确定环境风险潜势,按照下表 6.3-12 确定评价工作等级。风险潜势为IV及以上,进行一级评价;风险潜势为III,进行二级评价;风险潜势为II,进行三级评价;风险潜势为II,可开展简单分析。

表 6.3-12 评价工作等级划分

环境风险潜势	$IV \cdot IV^+$	III	II	I	
评价工作等级	_	- <u>-</u>		简单分析 a	
a 是相对于详细语	呼价工作内容而言	,在描述危险物质	、环境影响途径、	环境危害后果、风险	
防范措施等方面给出定性的说明。见附录 A。					

本项目环境风险潜势为Ⅱ级,对比上表,本项目环境风险评价工作等级为三级。

6.4 风险识别

6.4.1 国内电镀企业突发环境事件典型案例

为全面了解和掌握电镀企业的事故风险情况,对国内外同类企业部分典型事故情况进行了调查。具体统计结果见下表。

表 6.4-1 国内外电镀企业典型事故资料

序号	时间、地点	事故类型	事故后果及影响
1	2007年10月16日,美国密 歇根梅尔文戴尔区的一家 瑞里电镀公司的金属加工 厂	盐酸泄漏	当地 3000 名居民和两所学校学生被迫撤离, 共泄漏 2.273 立方米盐酸至工业区的隔离区
2	1987年10月27日,美国加尼福尼亚州林伍德电镀厂	硝酸泄漏	在硝酸转移到储罐中时,储罐爆裂,发生泄漏 事故,使得数百人逃离。
3	2012年10月22日,位于江	废置旧仓库起	事故后调查无人员伤亡,直接经济损失约

	南横坑工业园的环市电镀	火	5000 元
	厂		
4	2010年10月27日,浙江嘉 兴平湖一家电镀厂	火灾	仓库着火,仓库中有几只装着汽油的桶,汽油桶接连爆炸。火灾蔓延到生产车间,仓库与车间里的物品全部在大火中焚毁。
5	2007年10月8日,某工厂 电镀工	违章操作	李某按规定穿好劳动防护用品开始工作,8点半李某和同事王某开始配置电镀液,在开启氢氟酸溶液桶时,由于桶内盖密封比较严,戴胶手套不方便操作,李某换线手套并使用携带的钥匙撬动桶盖,致使氢氟酸浸到手套上,导致拇指被灼伤
6	2012年6月15日金山区春 华路的上海××金属表面处 理有限公司	其他情形	一名正式员工与三名外来务工人员先后进入 电镀槽作业,电镀槽内各种化学成份会挥发, 在一个相对封闭的空间内浓度过高,成4人死 亡。
7	2012 年 10 月至 2013 年 8 月间,巨某在温州市鹿城区 上戌乡渡头东路 105 号	违法排污	未经相关部门批准,开办电镀加工厂,雇佣他人利用硫酸镍、氯化镍、硼酸等化工原料及水,进行锁芯电镀,喷漆加工,并对产生的废水不经处理而接近900倍于国家标准值直接排放,已严重污染环境
8	2012年6月3日,金山区张 泾河、中运河	违法排污	部分水体受到污染,经查,污染系红光公司违规排放有毒物质所致,此次污染事件共造成直接经济损失 138 万余元。该公司委托未取得资质的企业为其处理电镀废水,最终酿成污染事件发生

6.4.2 物质危险性识别

按照导则附录 B, 本项目所涉及的危险化学品危险性识别见表 6.4-2。

表 6.4-2 危险化学品危险性识别见表

危险物质	分布区域	最力 仓库	大存在量(生产线	t) 总量	闪点 (℃)	爆炸极 限 (V%)	急性毒性	沸点 (℃	主要危害
镍板	车间	1	0.03	1.03	/	/	/	2732	有毒 有害
氯化镍	车间	0.1	0.003	0.103	/	/	LD ₅₀ : 186 mg/kg(大鼠经口)	973	有毒 有害
铬及其化 合物	车间	0.104	0.003	0.107	/	/	/	/	有毒 有害
盐酸	车间	7	0	7	/	/	LD ₅₀ : 900mg/kg(兔经 口); LC ₅₀ : 3124ppm 1 小时 (大鼠吸入)	108. 6 (20 %)	腐蚀有害
硝酸	车间	0.25	0.011	0.261	/	/	/	86	腐蚀

危险物质	分布区域	最大存在量(t)		t)	闪点	爆炸极 限	急性毒性	沸点 (℃	主要
7512 1777	7 11 2 3	仓库	生产线	总量	(℃)	(V%)	70. 12. 4 12.)	危害
硫酸	车间	5	2.5	8	/	/	LD ₅₀ : 2140 mg/kg(大 鼠 经 口); LC ₅₀ : 510 mg/m³,2 小时(大 鼠 吸 入); 320mg/m³,2 小时 (小鼠吸入);	337	腐 蚀、 有害
硫酸镍	车间	3	0.5	0.2	/	/	LD ₅₀ : 500mg/kg(大鼠, 腹腔)	840 (无 水)	有毒有害
氰化钠	车间	1	0.3	0.2	/	/	LD ₅₀ : 6440 μ g/kg(大鼠经口); LD ₅₀ : 4300 μ g/kg(大鼠腹腔); LD ₅₀ : 6.4 mg/kg (大鼠经口)	1496	剧毒

6.4.3 生产系统危险性识别

(1) 生产工艺过程

拟建项目生产装置主要常压和中温、低温下进行,涉及的有毒有害物质均为现场 配置现场使用,无需管道输送,无高风险的设备,生产过程中的风险较小。主要风险 为生产线槽体破损导致槽液泄漏,含重金属的槽液污染土壤和地下水。

(2) 储存过程中的事故风险分析

拟建项目原辅材料由商家配送,拟建项目所需盐酸采用瓶装、硫酸采用桶装,存放在仓库区。其他日常化学品由商家配送,少量存放在项目化学品仓储,采用袋装、桶装、瓶装、箱装等,多数为桶装。采取防腐防渗处理,设置托盘。主要风险为盐酸、硫酸等化学品泄露风险。

(3)运输过程中的事故风险分析

项目所需的盐酸、补充剂等化学产品均由生产经销商运送,由具有相应的运输资质的单位承担,故评价不予关注。

6.5 风险事故情形分析

6.5.1 事故树分析

事故树分析方法,也称故障树,是预测事故和分析事故的一种科学方法,是从结果到原因找出与灾害有关的各种因素之间因果关系和逻辑关系的分析法,也是"世界

银行"、"亚洲银行"贷款项目执行时推荐的方法。这种方法是把系统可能发生的事故放在图的最上面,称为项上事件,按系统构成要素之间的关系,分析与灾害事故有关的原因。通过事故树分析可以找出基本事件及其对项上事件影响的程度,为采取安全措施、预防事故提供科学的依据。项目顶端事故和各储罐发生泄漏事故的事故树分析详见图 6.5-1 和图 6.5-2。

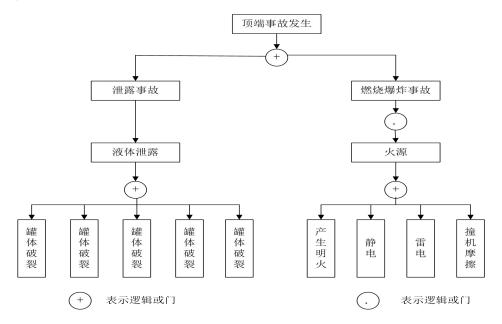


图 6.5-1 顶端事故发生示意图

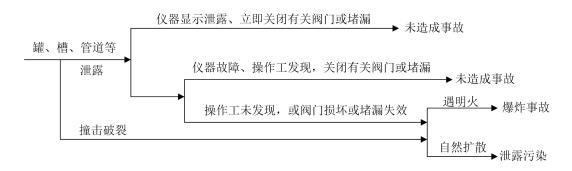


图 6.5-2 储罐、管道系统事故发生示意图

6.5.2 事故情形分析

针对上述风险识别结果,企业风险事故情形分析具体见表 6.5-1。

表 6.5-1 企业风险事故情形分析表

序号	危险单元	风险源	危险物质	环境风险类型	影响途径

1	生产线	镀槽	镍、铬及其化合物、盐酸、硝酸、 硫酸		大气、地表水、地下水、 土壤
2	仓库区	原料桶	盐酸、硝酸、硫 酸等	泄漏	大气、地表水、地下水、 土壤
3	废气处理	处理设施	盐酸雾、硫酸雾	泄漏	大气
4	危险废物暂存库	暂存库	危险废物	泄漏	地表水、地下水、土壤

6.6 源项分析

通过风险识别、危险性和危程度分析,本次评价选取盐酸泄漏进行环境影响分析。项目盐酸单瓶最大储存量为 2.5L,桶装储存在仓库中。本次评价按最不利情况,盐酸全部泄漏,盐酸含量为 32%。挥发量按下式计算。

 $Gz=M (0.000352+0.000786V) P \cdot F$

式中: Gz----酸雾排放速率, kg/h;

M----液体的分子量;

V----蒸发液体表面上的空气流速, m/s, 取 1.5m/s;

P----相应于液体温度下的空气中的蒸气分压力, mmHg, 查《环境统计手册》, 25℃取 15.1mmHg。

F----液体蒸发面的表面积, 估算取 100m²。

计算得, HCl 30min 挥发 42.2kg。

6.7 风险评价

本项目盐酸由供应商提供。华中表处园有盐酸罐,根据华中表处园环评报告中风险分析,盐酸罐发生盐酸泄漏后,在不同气候条件下,LC50 出现最远距离为 48.7m,在厂区出现; MAC 出现的最远距离为 2171m,短时间内会对人群健康有一定影响。本项目车间内的盐酸泄漏后挥发的盐酸雾将会对车间附近人员造成健康危害,车间内设置围堤对泄漏液体进行围堵。采取上述措施后,泄漏物质均能被限定在厂房内,其影响扩散范围较小,对外部影响较小。

若车间发生水环境风险事故,本项目依托华中表处园设置 14000m³ (园区内共设置 3 座风险应急池,容积为 2000m³ 的 1 座,容积为 6000m³ 的 2 座)的事故池,能够接纳本项目全部事故废水,确保全部收集不会溢出污染周边地表水体。华中表处园废水和雨水总排口分别设置电动控制阀,一旦发生事故关闭阀门,事故后适当开启,将

废水分批引入污水管网。

生产区、原料仓库区、废水收集罐区和危废暂存点均按要求进行防渗处理,防止废水渗透污染地下水和土壤。污水管采用明管铺设下设防渗沟,一旦破裂可迅速发现,避免废水大量泄漏渗透。有毒有害物质进入地下水环境预测详见地下水环境影响预测。

6.8 风险管理

6.8.1 风险防范措施

6.8.1.1 危险化学品贮运安全防范措施

(1) 危险化学品运输

根据近年来的事故风险统计,交通事故引发有毒物质泄漏到环境中的事件呈上升 趋势。必须加强运输过程中的风险意识和风险管理,危险化学品运输要由有资质的单 位承担,定人定车,合理规划运输路线。

(2) 危险化学品仓库

危险化学品仓库应拥有良好的储存条件,企业应根据《常用化学危险品贮存通则》(GB15603-1995)、《毒害性商品储藏养护技术条件》(GB17916-1999)进行储存。在化学品仓库及车间现场设置紧急喷淋和洗眼器,随时保持水管畅通;操作时根据物质安全技术说明书 MSDS 里的要求,并配戴适当的个人防护用品 PPE;制作厂区化学品兼容性矩阵表,同一仓库或围堰内只能贮存兼容的物质(如酸和碱不能贮存在一起)。

(3) 加强危险化学品的管理

要求企业加强危险化学品的管理,设置防盗设施。同时应加强管理,由专人负责,非操作人员不得随意出入。加强防火,达到消防、安全等有关部门的要求。做好药品的入库和出库登记记录,明确去向。加强对职工的安全教育,制定严格的工作守则和个人卫生措施,所有操作人员必须了解所有化学品如铬酸酐等化学品的有害作用及对患者的急救措施,以保证生产的正常运行和员工的身体健康。向化学品供应商索取化学品的物质安全技术说明书 MSDS,张贴在仓库贮存及使用现场,供操作人员学习。

6.8.1.2 工艺和设备、装置方面安全防范措施

(1)应按照有关规定和标准合理设计工程的安全监测系统,包括自动监测、报警、紧急切断及紧急停车系统,防火、防爆、防中毒等事故处理系统,还要完善应急救援

设施和救援通道。

- (2) 所有管道系统均必须按有关标准进行良好设计、制作及安装,必须由当地有关质检部门进行验收并通过后方能投入使用。危险化学品的输送管道应使用无缝钢管或铸铁管;管道连接采用焊接,尽可能减少使用接合法兰,以降低泄漏几率;如法兰连接使用垫片的材质应与输送介质的性质相适应,不应使用易受到输送物溶解、腐蚀的材料。工艺输送泵均采用密封防泄漏驱动泵以避免物料泄漏。物料输送管线要定期试压检漏。
- (3)进入厂区人员应穿戴好个人安全防护用品,如安全帽等。同时工作服要达到"三紧",女职工的长发要束在安全帽内,以防意外事故的发生。生产时,必须为高温岗位提供相应的劳动防护用品,并建立职工健康档案,定期对职工进行体检。操作电气设备的电工必须穿绝缘鞋、戴绝缘手套,并有监护人。对于高温高热岗位,应划出警示区域或设置防屏蔽设施,防止人员(特别是外来人员)受到热物料高温烫伤。

6.8.1.3 自动控制的安全防范措施

各生产装置的工艺控制应设置必要的报警自动控制及自动连锁停车的控制设施。 自动控制系统应采用关键数据输入的冗余技术,应具有关键输入的异常中止功能。自 动控制系统应辅之以就地显示仪表和就地控制阀门,能对紧急情况进行现场处理。

6.8.1.4 电气、电讯安全防范措施

应根据危险区域的等级,正确选择相应类型的级别和组别的电气设备。电气设备的组级别只能高于环境组级别,不能随意降低标准。设计、安装、运行、维修电气设备、线路、仪表等应符合国家有关标准、规程和规范的要求,并要求达到整体防爆性的要求; 电气控制设备及导线尽可能远离易燃易爆物质。

采用三相五线制加漏电保护体制。将中性线与接地线分开,中性线对地绝缘,接地线(保护零线)专用接地,以减少对地产生火花的可能性。安装漏电保护应严格按照有关规范要求执行。禁止使用临时线路,尽可能少用移动式电具。如必须使用,要有严格的安全措施。

建立和健全电气安全规章制度和安全操作规程,并严格执行。加强对电气设施进行维护、保养、检修,保持电气设备正常运行:包括保持电气设备的电压、电流、温升等参数不超过允许值,保持电气设备足够的绝缘能力,保持电气连接良好等。

企业应按规定定期进行防雷检测,保持完好状态,使之有可靠的保护作用,尤其 是每年雷雨季节来临之前,要对接地系统进行一次检查,发现有不合格现象进行整改, 确保接地线无松动、无断开、无锈蚀现象。

做好配电室、电气线路和单相电气设备、电动机、电焊机、手持电动工具、临时 用电的安全作业和维护保养;定期进行安全检查,杜绝"三违"。

对职工进行电气安全教育,掌握触电急救方法,严禁非电工进行电气操作。

6.8.1.5 消防及火灾报警系统

各入驻企业按照有关规定设置消防设施及火灾报警系统。在配电间内设光电感烟探测器及报警按钮。建筑消防设施应进行检测,并按有关规定,组织项目竣工验收, 尤其应请当地公安消防部门进行消防验收。

6.8.1.6 事故状态下排水系统及方式的控制

本项目废水分类收集进入废水收集罐,事故废水应急系统依托华中表处园水环境 风险防控设施,三级防控如下:

第一级防控措施是设置围堰和罐区防火堤,构筑生产过程中环境安全的第一层防控网,使泄漏物料切换到处理系统,防止污染雨水和轻微事故泄漏造成的环境污染。

第二级防控措施是在产生剧毒或者污染严重污染物的装置设置风险应急池,切断污染物与外部的通道、导入污水处理系统,将污染控制在厂内,防止较大生产事故泄漏物料和污染消防水造成的环境污染。华中表处园内建设 2000m³ 风险应急池 1 座、6000m³ 风险应急池 2 座、电镀废水深度处理车间自备应急池及备用水池 12 座(总容积11715m³),用于收集事故废水,确保事故状态下废水全部收集。

第三级防控措施是在雨排口增加切换阀门和引入电镀废水深度处理车间的风险应 急池管线作为三级防控措施,防控溢流至雨水系统的污水进入附近水体。华中表处园 三级防控如图 6.8-1 所示。

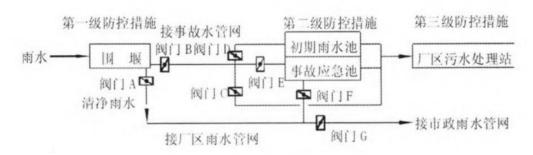


图 6.8-1 华中表处园三级防控示意图

6.8.1.7 其它事故防范措施

- (1)废气处理装置的风机采用一用一备的方法,严禁出现风机失效、废气未收集 无组织排放的工况。加强电镀废气吸收装置的运行管理,一旦出现事故性排放应及时 停止生产操作,待修复后再进行生产。
- (2)一旦发生电镀液事故性排放现象,需紧急关闭车间排放口闸门,采用围堰收集后用泵或重力流的方式送入应急事故池。待事故处理完毕后,在事先通知电镀废水深度处理车间的情况下,将事故废液逐步放入电镀废水深度处理车间处理达标后再行排放。

6.8.2 应急处理措施

6.8.2.1 大气环境风险事故应急处理措施

大气环境突发事件的主要类型有:环保设施异常引起的废气超标排放、化学品泄漏、生产安全事件引起的次生大气环境事件。

- (1)现场人员发现"大气环境突发事件"时应及时汇报值班组长(或车间负责人), 生产部迅速将消息传达到应急指挥部,通知相关部门做好应急准备,并要求有关人员 通讯要保持畅通,便于联络。
- (2)废气处理岗位操作人员在第一时间启动应急处理系统,对废气处理设施故障进行排查,采取关闭阀门、切断受损设施内的进料或转出受损设施内的物料,或者紧急抢修堵漏点等措施,避免污染物进一步产生,必要时关停生产设施,确保未达标的废气不对外排放。
 - (3) 明确防止污染物扩散的程序与措施
 - ①若盐酸等易挥发原料发生泄漏,必须立即启动气体紧急处置装置,采用喷淋和

吸附等方式;

②根据发生泄漏、火灾、爆炸等事件情形,划定可能受影响区域和最短响应时间。 6.8.2.2 水环境风险事故应急处理措施

当公司所用的部分原料如盐酸、硫酸、电镀液等发生泄漏及泄漏处置产生的洗消液;或在生产及仓储发生火灾等事故处置过程中,含危险化学品的消防水外泄;上述废水均进入华中表处园事故废水收集系统,及时与电镀废水深度处理车间进行沟通,本项目事故废水进入电镀废水深度处理车间处理达标后排放。

6.8.3 本项目具体风险防范措施

- ①1F 车间生产区、化学品间、废水收集罐区、危废暂存间地面及 1.2m 以下墙体范围按重点污染防治区进行防腐防渗处理。重点污染防治区防渗层参照《危险废物贮存污染控制标准》(GB18597-2001)及其修改单等要求设计防渗方案。防腐层参照《工业建筑防腐蚀设计规范》(GB50046-2008)、《建筑防腐蚀工程施工及验收规范》(GB50212-2002))等要求设计防腐方案。
- ②化学品暂存间设置危险化学品、严禁烟火等标识、标牌,地面进行防腐防渗处理。根据暂存化学品理化性质配备吸油毛毡、砂子、二氧化碳灭火器等应急物资。将固体与液体、酸性与碱性化学品分开储存。液体化学品临时储存区易发生泄漏,环评要求建设单位应在液体储存区设立围堤,液体化学品临时储存区围堤有效容积不小于25L,同时对贮存区进行防腐、防渗处理,可以保证在车间发生泄漏事故时不会向环境泄漏;设置应急积液坑以及围堰,防止废水收集槽发生泄漏事故向外排。
- ③各设施表面处理槽离地坪防腐面 400mm 架空设置,并分区设置接水托盘。接水盘根据收水的性质分区域设置,收集的废水全部用 PP 管接入相应类别废水排放管。电镀生产线最大外围轮廓设置 150mm 高混凝土抗渗围堰(积液通过对应废水管道流入管廊对应废水管道)。
 - ④架空层周边地面设置截水沟, 且进行防腐防渗处理。
- ⑤建立完善的安全生产管理制度、操作规范,加强生产工人安全环境意识教育,实行持证上岗。建立环境风险应急预案,明确人员责任。加强巡查,发现物料管道、机泵、生产设施槽体出现泄漏时,应及立即停止生产,及时补漏。

⑥与华中表处园电镀废水深度处理车间建立联动机制。在电镀废水深度处理车间 发生事故时,确保产生的生产废水小于 10h 生产废水产生量, 若将超过时加工区企业 应立即停产, 杜绝生产废水未经过处理直接排入地表环境情况发生。

6.8.4 风险应急预案

事故救援指挥系统是应对紧急事故发生后进行事故救援处理的体系,该系统对事 故发生后作出迅速反应,及时处理事故,果断决策,减少事故损失是十分必要的。事 故救援指挥系统包括组织体系、通讯联络、人员救护待方面内容,因此在项目投产前 应着手制定环境风险应急预案,并注意与华中表处园风险防范措施和应急预案的衔接, 报开发区管委会、荆州市生态环境局备案。

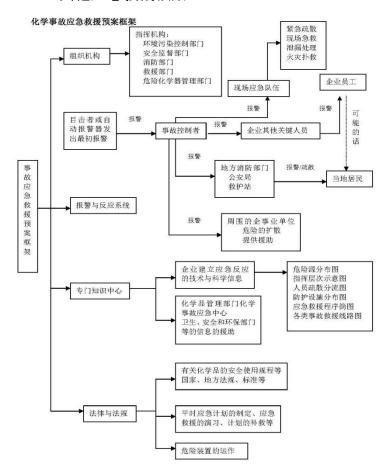
6.8.4.1 应急预案内容

根据本环境风险分析的结果,对于本项目可能造成环境风险的突发性事故,项目 建设单位及相关安监部门应制定应急预案纲要,其内容见表 6.8-1。

序号 项目 内容及要求 1 危险源情况 详细说明危险源类型、数量、分布及其对环境的风险 电镀生产区、废气及废水处理设施区、化学原料仓储区、危废暂存间 2 应急计划区 企业:成立公司应急指挥小组,由公司最高领导层担任小组长,负责现 场全面指挥,专业救援队伍负责事故控制、救援和善后处理。 应急组织 3 临近地区:地区指挥部—负责企业附近地区全面指挥,救援,管制和疏 散 应急状态分类用规定环境风险事故的级别及相应的应急状态分类,以此制定相应的应急 4 应急响应程序 响应程序 生产和仓库区: 防火灾事故的应急设施、设备与材料, 主要为消防器材 消防服等; 防有毒有害物质外溢、扩散; 中毒人员急救所用的一些药品。 应急设施、设备 5 器材:生产装置及原料贮场应设置事故应急池,以防液体化学原料的进 与材料 一步扩散:配备必要的防毒面具。临界地区:烧伤、中毒人员急救所用 的一些药品、器材。 应急通讯、通告规定应急状态下的通讯、通告方式和交通保障、管理等事项。可充分利 6 与交通 用现代化的通信设施,如手机、固定电话、广播、电视等 7

表 6.8-1 环境风险突发事故应急预案内容

应急环境监测及由专业人员对环境分析事故现场进行应急监测,对事故性质、严重程度


		均所造成的环境危害后果进行评估,吸取经验教训避免再次发生事故, 为指挥部门提供决策依据。
8	原泄漏措施及需 使用器材	事故现场:控制事故发展,防止扩大、蔓延及连锁反应;清除现场泄泥物,降低危害;相应的设施器材配备; 临近地区:控制泄漏及防火区域,控制和消除环境污染的措施及相应的设备配备。
9	离组织计划医疗 救护与保护公众	事故现场:事故处理人员制定毒物的应急剂量、现场及临近装置人员的撤离组织计划和紧急救护方案; 临近地区:制定受事故影响的临近地区内人员对毒物的应急剂量、公众的疏散组织计划和紧急救护方案。
10	<i>₹</i> +# + <i>⁄</i> -	事故现场:规定应急状态终止秩序;事故现场善后处理,回复生产措施;临近地区:解除事故警戒,公众返回和善后回复。
11		应急计划制定后,平时安排事故出路人员进行相关知识培训并进行事故 应急处理演习;对工厂工人进行安全卫生教育。
12		对工厂临近地区公众开展环境风险事故预防教育、应急知识培训并定期发布相关信息。
13	记录和报告	设应急事故专门记录,建立档案和报告制度,设专门部门负责管理。
14	附件	准备并形成环境风险事故应急处理有关的附件材料。

6.8.4.2 应急救援预案

事故的应急救援在安全管理对策措施中占有非常重要的地位,制定事故应急救援 预案作为建设项目"三同时"验收条件之一,在工程建设和生产期间,应建立各类事故 的应急救援预案外,对易燃、易爆的关键生产装置和重点生产部位都要制定事故的应 急救援预案。主要有以下几个方面:

- (1) 易燃、易爆物料大量泄漏时的应急救援预案。
- (2) 化工原料存储区发生物料意外泄漏或事故溢出时的应急救援预案。
- (3) 化学品发生交通运输事故时的应急救援预案。
- (4) 发生全厂性和局部性停电时的应急救援预案。
- (5) 发生停水时的应急救援预案。
- (6) 生产装置工艺条件失常时的应急救援预案。
- (7) 发生自然灾害(包括厂区水灾、遭受台风、高温季节、寒冷冰冻、地震、雷击)时的应急救援预案。

- (8) 发生火灾(包括特殊情况下的火灾)时的应急救援预案。
- (9) 发生爆炸时的应急救援预案。
- (10) 发生管道阀门破损、泄漏等综合事故时的应急救援预案。
- (11) 生产装置控制系统发生故障时的应急救援预案。
- (12) 其他应急救援预案。

6.8.4.3 环境污染事故应急预案

(1) 指挥部人员职责分工

总指挥:负责对突发环境污染事故应急预案的启动和决策,全面负责和指挥环境 污染事故现场的应急处理工作。

副指挥: 协助总指挥做好协调和实施应急处理工作。

环境保护部:负责指挥和监督事故现场及原料物质扩散区域内的监测、监控工作, 承担事故处理全过程的对外汇报、联系和理赔处理。负责事故污水和消防污水的接纳 以及各单位与排水口的监督工作。 安全监察部:在指挥部的领导下做好事故报警,救援队伍的引导及事故处理工作。 生产管理部:负责事故处理时生产系统的调整、指挥和协调工作,做好事故发生 后公司应急处理信息的传递工作。

保卫部:组织、指挥事故现场无关人员疏散,负责事故现场的保卫工作。

医疗部门:负责受影响较重人员和受伤人员的急救和治疗工作。

(2) 应急处理物资的组织

应急处理物资包括:防静电劳动防护服装、防电离辐射铅服、防静电鞋。呼吸器 材,其中抢险人员必须配备空气呼吸器。石棉布、铜质或棉麻类的绳子。便携式可燃 气体检测仪、防爆灯具。消油剂、吸油毡、围油栏、隔膜泵、编织袋等相关工具。

(3) 应急处理的工作流程原则

按照公司总预案要求,环境污染事故应急处理的工作程序为:人员救助、医疗救护、工程抢险、警戒管制、人群疏散、污染控制、现场监测、专家支持。

立即组织人员抢救事故中受到伤害和中毒的人员。

根据现场情况,参照危险化学品事故现场区域划分标准,迅速确定事故现场保护区,撤离非应急处理人员,封闭现场,并设立明显警戒标志。

在保证人员安全条件下,及时查清污染源,并组织实施切断工作,防止事故蔓延。 确定专业人员,在采取必要的安全防护条件下,进行物料回收、清理现场,妥善 处理已造成的污染,将污染损失降低到最小。现场处理时要安排必要的监护

人员和设施,需要时消防、气防给予配合。

公司监测站接到通知携带大气和水体等必要的监测工具及时奔赴现场。根据公司环境保护部的安排进行大气和水体监测,并跟踪下游,进行采样。

(4) 应急处理措施要点

立即采取措施切断污染源, 防止事故的进一步扩大。

由生产调度、工艺技术和安全、环保人员确定方案,根据具体情况实施关闭阀门、停工或改变工艺、物料流程、局部停车、打循环或降量运行等。

专业人员进入泄漏现场进行处置时,应全面做好安全防护,应及时切断电源,禁止车辆进入,设立警戒区,严禁火种,应使用专用防护用具,应急处理时要有监护人,严禁单人行动。堵漏需要采用合适的材料技术手段,应由专业人员进行。

采取回收物料、清理现场措施,要妥善处理已造成的污染,将污染降低到最小程度。对于大量泄漏,可采用隔膜泵将物料抽入容器内或槽车内,对于一般泄漏,可采用围堤堵截,在保证安全的前提下,用人工方法回收,对于泄漏量小的,可用沙子、吸附材料、中和材料等吸收处置。在处置现场时,应关闭雨排系统或其它直排环境的通道,防止物料沿明沟外流,污染环境。

6.9 风险评价结论

(1) 项目危险因素

本项目主要危险物质为镍板、氯化镍、铬及其化合物、盐酸、硝酸、硫酸、硫酸 镍和氰化钠,主要危险单元为生产装置区、原料库区、废水收集罐区、危废暂存点等, 主要危险因素为盐酸等泄漏,对周围大气环境产生影响,镀液、危废等泄漏影响地下 水、土壤环境。

(2) 环境敏感性及事故环境影响

项目选址位于荆州经济开发区,项目周边 5km 范围内居住区、医疗卫生、文化教育、科研、行政办公等机构人口总数约 4.09 万人,小于 5 万人;大气环境敏感程度为 E2 类。一旦发生大气环境风险事故,将对下风向环境敏感点造成影响。企业应加强设备、阀门、管道等的定期维护,万一发生危害性事故,应立即通知有关部门,组织疏散、抢险和应急监测等善后处理事宜。

本项目危险物质排放进入华中表处园事故废水系统,企业在车间原料存储区设置托盘,收集可能泄漏物质,依托华中表处园三级风险防控,华中表处园建设3座风险应急池,2座6000m³和1座2000m³,能够满足华中表处园内事故收集要求。雨污水排放口设置切断装置,发生事故时,及时拉开排污口切断装置,将事故废水引入事故池,经处理达标后排放。

项目所在区域不属于生活供水水源地准保护区,不属于热水、矿泉水、温泉等特殊地下水源保护区,也不属于补给径流区,拟建项目地下水功能敏感性为不敏感(G3);包气带防污性能为 D2。项目地下水环境敏感程度为 E3 类型。为了防止对地下水造成污染,企业按照要求实施分区防渗措施,防止地下水污染。

(3) 环境风险防范措施和应急预案

项目大气环境风险防范从危险化学品贮存、工艺、装置等方面均充分考虑了环境风险防范,厂区按照消防安全,设置消防设施,配备抢修装备和个人防护措施,依托华中表处园水环境风险"三级防控"体系;将按照要求制定环境风险应急预案,并报主管部门备案,积极与园区环境风险防范措施、环境风险应急预案进行对接,形成联动机制。

(4) 环境风险评价结论与建议

建设单位应严格落实本评价提出的各项环境风险防范措施,完善环境风险监控预警系统,配备必须的环境风险物资、装备,制定环境风险应急预案,加强与华中表处园、军民融合暨光通讯电子信息产业园联动,加强事故应急演练,不断完善环境风险防范措施,提升环境风险事故处置能力。一旦发生事故迅速反应,采取合理的应对方式,并立即向园区、政府有关部门汇报,寻求社会支援,可将环境风险危害控制在可接受的范围内。

7 环境保护措施及其可行性论证

7.1 营运期环境保护措施

7.1.1 大气环境保护措施及其可行性分析

7.1.1.1 废气污染防治措施

本项目大气污染物主要为氯化氢,项目共设计2套酸雾净化塔处理装置和1套铬酸雾净化塔处理装置。本评价对氯化氢的污染防治措施及工艺可行性进行论述。

本项目电镀生产线废气主要为盐酸雾和碱雾,根据生产线布置情况,共设置 2 套酸雾净化系统。具体方案如下:为提高生产工序过程中酸、碱雾捕集率,在各酸、碱雾产生工序设置槽边侧吸+槽顶抽风系统(捕集率约 90%)进行收集,整体吸入通风管道中,然后通过排气系统中的废气净化塔进行处理,废气净化采用三级碱液喷淋中和的方法进行净化处理(对氯化氢处理效率达到 99%以上),净化后的废气由 301#厂房35m 高烟道排放。

净化装置原理为: 盐酸易溶于水、易与碱反应。各工序产生的酸雾经集气罩抽风,两侧槽边吸气罩吸入通风管道中,进入喷淋吸收塔时酸雾被喷淋碱液吸收(中和)并逐渐形成大雾滴,沿导流管进入集液槽,由泵抽取循环使用。碱雾同酸雾一并抽入酸雾净化塔处理,废气中的碱性物质进入酸雾净化塔后与酸雾反应后溶解于吸收液中。酸雾废气净化系统主要由集气罩、排气管、废气喷淋净化塔、通风机、泵及加药系统等组成。具体处理工艺流程如图 7.1-1 所示。

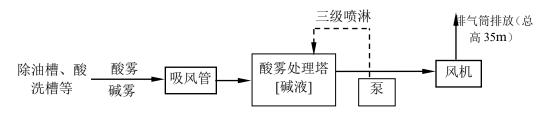


图 7.1-1 酸雾净化装置处理流程图

酸雾废气采用的喷淋塔中和法处理工艺属于《电镀污染防治最佳可行技术指南》 (试行)中电镀工业大气污染治理最佳可行技术之列,适用于各种酸性气体净化,采

用氢氧化钠溶液中和盐酸废气。根据照《污染源源强核算技术指南 电镀》(HJ984-2018) 附录 F,低浓度氢氧化钠或者氨水中和盐酸去除率可达 95%以上。参考同类型企业宣城三友材料表面处理有限责任公司年处理 12000 吨镀锌件、50 万平方米镀铬件项目阶段性竣工验收监测报告,该企业酸性废气采用碱液喷淋进行吸收处理,根据其验收监测结果,其挂镀锌线酸性废气: 氯化氢废气进口浓度为 4.54mg/m³、出口浓度 0.64 mg/m³、去除效率为 85.9%,滚镀锌生产线酸性废气: 氯化氢废气进口浓度为 2.38mg/m³、出口浓度 0.65 mg/m³、去除效率为 72.7%。本项目酸性废气采用三级碱液吸收,本项目酸性废气浓度为 7.51mg/m³,一级碱液中和盐酸雾去除率以 90%计,随着盐酸雾浓度降低,去除效率有所降低,二级碱液中和盐酸雾去除率以 90%计,随着盐酸雾浓度降低,去除效率有所降低,二级碱液中和去除率为 80%,三级碱液中和去除率为 60%,三级碱液吸收去除效率可达 99%以上,能够实现达标排放。

综上,本项目采用三级碱液喷淋塔中和法进行废气处理,该技术属于《排污许可证申请与核发技术规范 电镀工业》(HJ 855-2017)表7中治理氯化氢废气的可行技术,技术成熟,污染物可实现达标排放,且去除效果稳定,运行成本较低,操作容易。因此,在经济、技术上,该处理工艺合理可行。

7.1.1.2 废气达标排放可行性分析

根据工程分析可知,电镀生产线酸雾废气经收集后分别由 2 套酸雾净化塔装置处理,尾气由 301#厂房烟道排放,风量为 24000m³/h,折算成基准排放量下的排放浓度为盐酸雾 20.56mg/m³,能够满足《电镀污染物排放标准》(GB 21900-2008)表 5 中排放限值要求(氯化氢 30 mg/m³)。

按照《电镀污染物排放标准》(GB 21900-2008)要求,排气筒高度应不低于 15m,排气筒高度应高出周围 200m 半径范围的建筑 5m 以上,不能达到该要求高度的排气筒,应按排放浓度限值的 50%执行。周围 200m 范围内最高建筑物为厂区内厂房,厂房高度为 30m,厂房烟道高 35m,排气筒高度符合要求。

7.1.1.3 无组织废气污染防治措施

为尽量减少无组织废气的产生量,降低无组织废气排放对区域大气环境质量造成的不利影响,项目计划采取以下防治措施:

(1) 使用先进设备,提高设备密封性,所有机泵、管道、阀门等连接部位、转运部分都应连接牢固,尽可能做到严密、不渗、不漏、不跑气,最大限度削减无组织废

气的挥发:

- (2) 在不影响工艺生产的前提下,产生碱雾、酸雾的镀槽可设置自动槽盖,在酸洗功能槽中添加酸雾抑制剂,尽量减少无组织废气逸散。
 - (3) 车间设置 200m 卫生防护距离,降低无组织废气对环境敏感点的影响。

7.1.1.4 废气污染防治措施强化建议

本评价对废气的污染防治提出强化建议,主要是以加强管理为主,以管促治,预 防为主,防治结合,主要措施如下:

- (1)增强企业领导和企业员工的环保意识,严格执行废气排放的各项标准和规定。 加强环保和安全意识教育,严格执行生产操作规程,预防污染事故的发生。
- (2) 积极推进清洁生产技术和制度的实施,加强企业领导和技术人员对清洁生产的认识,让企业自发加强生产管理,减少"跑、冒、滴、漏",使无组织废气排放最小化。
- (3) 定期对生产装置、设备和废气治理设施进行检查维修,减少酸雾废气的无组织排放,杜绝事故隐患,确保安全生产。
 - (4) 加强车间内通风措施,以改善工作卫生环境条件。

7.1.2 地表水环境保护措施及其可行性分析

本项目废水包括电镀生产废水和生活污水两个部分,废水总产生量为 12616m³/a,均依托华中表处园内电镀废水深度处理车间处理,回用水量 5150 m³/a,排放水量 7466 m³/a,最终尾水外排长江。本项目租用华中表面处理循环经济产业园 301#厂房 4 楼,项目业主仅承担华中表处园收集管网前的各类废水收集管网的建设,废水经管网接入厂房外的废水收集罐,再进入电镀废水深度处理车间处理。本项目不单独设职工宿舍、食堂等生活设施,生活污水主要来自车间内的卫生间,收集进入华中表处园内生活污水调节池,进入电镀废水深度处理车间处理。

7.1.2.1 本项目废水治理措施概述

本项目生产、生活废水总产生量为 42.05m³/d(12616m³/a),各类废水按照华中表处园要求分质、分类处理。根据工程分析,本项目生产废水分为 10 类,各类废水产生量分别为:高浓有机废水 1.98 m³/d、高浓酸性废水 1.98 m³/d、前处理废水 11.33 m³/d、

高浓锌络废水 1.39 m³/d、络合废水 0.99 m³/d、高浓含铬废水 2.08 m³/d、含铬废水 3.96 m³/d、综合废水 1.98 m³/d、高浓重金属废水 2.48 m³/d、高浓地面清洗水 1.88 m³/d,生活污水 12m³/d(3600m³/a),废水中各污染物浓度应满足华中表处园电镀废水深度处理车间进水水质要求,经电镀废水深度处理车间处理后,回用水量 5150 m³/a,排放水量 7466 m³/a,废水中第一类重金属污染物经分质处理达到《电镀污染物排放标准》(GB 21900-2008)表 2 中车间或生产设施排口排放限值要求后,与其他工业废水一起经园区专业污水处理设施进行处理,总排口废水达到《电镀污染物排放标准》(GB 21900-2008)表 2 标准以及《城市污水再生利用 工业用水水质》(GB/T 9923-2005)中相应排放标准限值,最终尾水外排长江。

7.1.2.2 废水进电镀废水深度处理车间可行性分析

根据《湖北金茂环保科技有限公司华中表面处理循环经济产业园环境影响报告书》,生产区设置电镀废水深度处理车间 1 座,废水处理设计能力 27000m³/d,排水量 16000m³/d,回用水量 11000m³/d,最终废水外排长江。目前华中表处园电镀废水深度处理车间一期一阶段 5000m³/d 工程正在建设中,待华中表处园内环保设施建设完成开始运行后,本项目才开始投入运行。根据《华中表面处理循环经济产业园项目环境影响报告书》7.2 章节中分析,华中表处园电镀废水深度处理车间设计满足《电镀废水治理工程技术规范》(HJ2002-2010)中技术要求。

(1) 污水处理能力合理性分析

华中表处园电镀废水深度处理车间一期工程处理规模为 5000 m³/d, 本项目废水分类分质收集进入电镀废水深度处理车间。各类废水收集处理规模与本项目废水产生情况对比见下表:

废水种类	本项目排放量(m³/d)	一期工程一阶段设计处理能 力(m³/d)	占比 (%)
高浓有机废水	1.98	80	2.48
高浓酸性废水	1.98	80	2.48
前处理废水	11.33	1000	1.13
高浓锌络废水	1.39	200	0.70
络合废水	0.99	230	0.43

表 7.1-1 各类废水处理能力对比表

高浓含铬废水	2.08	40	5.20
含铬废水	3.96	760	0.52
综合废水	1.98	600	0.33
高浓重金属废水	2.48	80	3.10
高浓地面清洗水	1.88	200	0.94
生活污水	12	200	6

各类废水占相应类别废水收集处理系统 0.33%~6%, 电镀废水深度处理车间一期工程能够满足本项目废水处理需求。

(2) 污水接管水质合理性分析

本项目废水严格按照华中表处园管理要求进行分质分类,同时根据各类废水水质特征分为高浓、低浓,华中表处园电镀废水深度处理车间设计时充分考虑了入驻生产企业水质排放特征,本项目进水水质满足电镀废水深度处理车间进水水质要求,详细对比见下表。

表 7.1-2 各类废水主要污染物水质控制要求对比表

序号	废水种类	污染物	本项目污染物产生浓度 (mg/L)	电镀废水深度处理车间 进水水质要求	是否符合进水水质要求
		pH(无量纲)	8~10	>7	
		COD	1000	<6500	
1	高浓有机废水	氨氮	40	<300	符合
		SS	500		
		石油类	50		
		pH(无量纲)	2~3		
		COD	350	<400	
2	京妆彩牌成本	氨氮	20		<i>55</i> 55
2	高浓酸性废水	SS	150		符合
		总锌 a	3		
		总镍♭	0.7		
		pH(无量纲)	4~6	>2	
	前处理废水	COD	500		
3		氨氮	20		符合
		SS	180		
		石油类	15	<40	
4	高浓锌络废水	pH(无量纲)	3~5		符合

		COD	800		
		氨氮	30		
		SS	350		
		总锌 a	481	<3000	
		总镍b	35		
		pH(无量纲)	5~7	>5	
		COD	500		
_	/4 A D. L.	氨氮	25		555 A
5	络合废水	SS	200		符合
		总锌 a	15		
		总镍b	1.38	<400	
		pH(无量纲)	3~5		
		COD	600		本项目高浓含铬废水中
6	高浓含铬废水	氨氮	20		一总络浓度低于
		SS	280		500mg/L,但不会对其处
		总铬 b	13.7	≥500	——理系统造成冲击 ——
		pH(无量纲)	4~6		
		COD	300		
7	含铬废水	氨氮	10		 符合
		SS	100		
		总铬 b	1.6	< 500	
		pH(无量纲)	4~6	>2	
		COD	200		
8	综合废水	氨氮	10		符合
		SS	80		
		总锌 a	15.2		
		pH(无量纲)	3~5		
	- \	COD	500		
9	高浓重金属废水	氨氮	20		符合
		SS	200		
		总锌 a	69		
	高浓地面清洗水	pH(无量纲)	6~8		
		COD	600		
		氨氮	35		
10		SS	400		符合
		总锌 a	10		
		总镍,	1.2		
		总铬b	1.1	<20	

		COD	350	
11	生活污水	氨氮	25	 符合
		SS	250	

(3) 污水接管管网连通合理性分析

本项目生产设备入驻车间时将同期配置分类收集废水管网,收集进入车间外废水收集罐,参见下图 7.1-2。废水收集罐与电镀废水深度处理车间之间管网由华中表处园配套建设,各类废水管网设置在地下管廊内,一期建设地下管廊 1.2km,预计 2020 年7 月底达到排水条件,在华中表处园不具备排水和处理能力之前,本项目不进行生产,本项目废水进电镀废水深度处理车间的管网连通可行。

图 7.1-2 废水分类收集罐照片

(4) 污水处理工艺合理性分析

华中表处园在建电镀废水深度处理车间在原规划废水分类、工艺流程上更加优化, 根据华中表处园环评报告,电镀废水深度处理车间的污水处理工艺能够实现废水达标 排放,因此污水处理工艺是合理可行的。

(5) 运行时间衔接性

华中表处园电镀废水深度处理车间预计 2020 年 8 月建成试运行,在电镀废水处理车间未启动运行前,本项目不得进行生产。

7.1.3 声环境保护措施及其可行性分析

项目噪声主要来源于主要来源于生产设备。噪声源强 65~100dB(0A), 经隔声、消

声、减震等降噪措施后,噪声源强降低至 55~70dB(A)。项目拟采取如下的噪声污染防治措施:

- ①由于机械设备的振动而产生的噪声考虑设备基础的隔振;
- ②对风机等空气动力噪声设备的气流通道上加装消声器:
- ③对噪声大的设备设置在隔音室内;
- ④选用低噪声设备,合理布局,加强维护管理。

除此以外,本环评针对项目提出如下噪声控制强化措施建议:

(1) 风机噪声控制

风机噪声频谱呈宽带特性,一般由空气动力性噪声和机械噪声组成,主要采用消声器和隔声减振技术。在进气和排气管道上安装适当的消声器,消声器类型可选择阻性片式、折板式、蜂窝式以及阻抗复合式等。另外,将风机封闭在密闭的隔声罩内,并在底座下加装隔振器,使从风机机壳、管道、机座以及电动机等处辐射出的噪声被隔离。为减弱从风机风管辐射出来的噪声,可用隔音棉等材料对管道进行包扎、隔绝噪声由此传播的途径。

(2) 泵类噪声控制

泵类设备噪声主要来自液力系统和机械部件及废水废气处理。液力噪声是由液体中的空穴和液体排出时的压力、流量的周期性脉动而产生的,机械噪声是由转动部件不平衡、轴承不良和部件共振产生的。一般情况下,液力噪声是泵噪声的主要成份。本项目将通过采用减振基础的方式,水泵吸水管和出水管上均加设可曲绕橡胶接头以控制其噪声。

(3) 其它措施及建议

- ①对靠近厂区办公楼和生活服务设施并有可能对其产生影响的高噪声源设备必须 采用封闭式厂房围护结构设计,切实加强噪声控制设计措施。
- ②总体布置上利用建筑物合理布局,阻隔声波的传播,高噪声源在厂房中央尽量远离敏感点,使噪声达到最大限度的自然衰减,降低对周围环境的影响。
 - ③加强厂区内车辆管理,厂区内限速,禁止鸣笛,设置减速带。

项目噪声防治措施具有技术可行性,同时拟采取的噪声防治方案投资不大,在建设单位可承受范围内,根据预测可知,项目噪声在采取隔声减振等措施后,再经距离

衰减以及绿化隔声、吸声等,能够满足3类标准要求,本项目噪声治理措施在技术经济上是可行的。

7.1.4 固体废物处置措施及其可行性分析

7.1.4.1 固体废物处置措施概述

本项目产生的固体废物主要有废槽液、废槽渣、含锌、镍、铬等重金属废渣及废过滤芯、废钝化槽液、废危化品包装以及职工的生活垃圾。本项目危险废物产生量为23.59t/a,危废设加盖桶收集,暂存于车间危废暂存点,由企业运输到华中表处园危废暂存间暂存,定期交由有资质的单位清运处置。生活垃圾产生量为15t/a,由环卫部门统一清运。

本项目固体废物均得到妥善处置,处置率为 100%,本工程采取的各项固体废物处置措施技术经济可行。

7.1.4.2 危险废物防治要求

项目产生的危险废物应按照《中华人民共和国固体废物污染防环境治法》、《危险废物贮存污染控制标准》(GB18597-2001)、《危险废物转移联单管理办法》及《危险废物污染防治技术政策》要求处理,严格落实处置措施,实现零排放。

7.1.4.2.1 危险废物的收集过程污染防治措施

在项目危废收集过程中应采取以下防治措施:

- (1) 危险废物要根据其成分,用符合国家标准的专门容器分类收集。
- (2)装有危险废物的容器和场所必须设有标签,在标签上详细标明危险废物的名称、重量、成分、特性以及发生泄漏、扩散污染事故时的应急措施和补救方法。
- (3) 危险废物收集时应根据危险废物的种类、数量、危险特性、物理形态、运输要求等因素确定包装形式,具体包装应符合如下要求:
 - ①包装材质要与危险废物相容,可根据废物特性选择钢、铝、塑料等材质。
 - ②性质类似的废物可收集到同一容器中,性质不相容的危险废物不应混合包装。
 - ③危险废物包装应能有效隔断危险废物迁移扩散途径,并达到防渗、防漏要求。
 - ④包装好的危险废物应设置相应的标签,标签信息应填写完整详实。
 - ⑤盛装过危险废物的包装袋或包装容器破损后应按危险废物进行管理和处置。

- ⑥危险废物还应根据《危险货物运输包装通用技术条件》(GB12463-2009)的有 关要求进行运输包装。
 - (4) 危险废物的收集作业应满足如下要求:
- ①应根据收集设备、转运车辆以及现场人员等实际情况确定相应作业区域,同时要设置作业界限标志和警示牌。
 - ②作业区域内应设置危险废物收集专用通道和人员避险通道。
 - ③收集时应配备必要的收集工具和包装物,以及必要的应急监测设备及应急装备。
- ④危险废物收集应参照《危险废物收集 贮存 运输技术规范》(HJ2025-2012)附录 A 填写记录表,并将记录表作为危险废物管理的重要档案妥善保存。
 - ⑤收集结束后应清理和恢复收集作业区域,确保作业区域环境整洁安全。
- ⑥收集过危险废物的容器、设备、设施、场所及其它物品转作它用时,应消除污染,确保其使用安全。
 - (5) 危险废物内部转运作业应满足如下要求:
- ①危险废物内部转运应综合考虑厂区的实际情况确定转运路线,尽量避开办公区 和生活区。
- ②危险废物内部转运作业应采用专用的工具,危险废物内部转运应参照《危险废物收集 贮存 运输技术规范》(HJ2025-2012)附录 B 填写《危险废物厂内转运记录表》。
- ③危险废物内部转运结束后,应对转运路线进行检查和清理,确保无危险废物遗 失在转运路线上,并对转运工具进行清洗。

7.1.4.2.2 危险废物的贮存过程污染防治措施

本项目产生的危险废物采用防渗漏桶收集,暂存于厂房内危废暂存点,该危废暂存点地面要求环氧乙烯基玻璃衬里,厚度 2mm(乙烯基五步七油+1mm 厚乙烯基砂浆重防腐层),再用 5~10mm 厚的 PP 板做高度至少 12cm 托盘防护。

企业应建立危险废物贮存的台帐制度,危险废物出入库交接记录内容应参照《危险废物收集 贮存 运输技术规范》(HJ2025-2012)附录 C 执行。

7.1.4.2.3 危险废物运输过程污染防治

(1) 从企业危废暂存点转运至华中表处园危废暂存间,企业应做好转运记录,转 运过程应按照要求进行分类、包装,确保转运车上物品稳固牢靠,不滑落、不泄露、

不抛洒。

- (2) 华中表处园外部危险废物运输应由持有危险废物经营许可证的单位按照其许可证的经营范围组织实施,承担危险废物运输的单位应获得交通运输部门颁发的危险货物运输资质。
- (3) 危险废物公路运输应按照《道路危险货物运输管理规定》(交通部令[2005年]第9号)、JT617以及JT618执行。
- (4)运输单位承运危险废物时,应在危险废物包装上按照 GB18597 附录 A 设置标志。
 - (5) 危险废物公路运输时,运输车辆应按 GB13392 设置车辆标志。
 - (6) 危险废物运输时的中转、装卸过程应遵守如下技术要求:
- ①卸载区的工作人员应熟悉废物的危险特性,并配备适当的个人防护装备,装卸 剧毒废物应配备特殊的防护装备。
 - ②卸载区应配备必要的消防设备和设施,并设置明显的指示标志。
 - ③危险废物装卸区应设置隔离设施,液态废物卸载区应设置收集槽和缓冲罐。

7.1.4.2.4 危险废物处置过程污染防治

项目产生的危险废物最终委托有资质的单位安全处置,由处置单位负责运输。危险废物转移过程应按《危险废物转移联单管理办法》执行。

只要建设单位认真按《中华人民共和国固体废物污染环境防治法》、《危险废物贮存污染控制标准》(GB18579-2001)和《危险废物收集 贮存 运输技术规范》(HJ2025-2012)的要求,进行危险废物贮存场所及贮存设施的建设、运行管理,本项目所产生的危险废物对环境的影响可得到有效地控制。

7.1.4.2.5 危险废物的申报和转移要求

危险废物的申报和转移应按照注意以下事项:

(1) 危险废物产生单位在转移危险废物前,须按照国家有关规定报批危险废物转移计划,经批准后,产生单位应当向移出地环境保护行政主管部门申请领取联单。

产生单位应当在危险废物转移前三日内报告移出地环境保护行政主管部门,并同时将预期到达时间报告接受地环境保护行政主管部门。

(2) 危险废物产生单位每转移一车、船(次)同类危险废物,应当填写一份联单。

每车、船(次)有多类危险废物的,应当按每一类危险废物填写一份联单。

- (3)危险废物产生单位应当如实填写联单中产生单位栏目,并加盖公章,经交付 危险废物运输单位核实验收签字后,将联单第一联副联自留存档,将联单第二联交移 出地环境保护行政主管部门,联单第一联正联及其余各联交付运输单位随危险废物转 移运行。
- (4) 危险废物运输单位应当如实填写联单的运输单位栏目,按照国家有关危险物品运输的规定,将危险废物安全运抵联单载明的接受地点,并将联单第一联、第二联副联、第三联、第四联、第五联随转移的危险废物交付危险废物接受单位。
- (5) 危险废物接受单位应当按照联单填写的内容对危险废物核实验收,如实填写 联单中接受单位栏目并加盖公章。
- (6)接受单位应当将联单第一联、第二联副联自接受危险废物之日起十日内交付产生单位,联单第一联由产生单位自留存档,联单第二联副联由产生单位在二日内报送移出地环境保护行政主管部门;接受单位将联单第三联交付运输单位存档;将联单第四联自留存档;将联单第五联自接受危险废物之日起二日内报送接受地环境保护行政主管部门。
- (7) 危险废物接受单位验收发现危险废物的名称、数量、特性、形态、包装方式与联单填写内容不符的,应当及时向接受地环境保护行政主管部门报告,并通知产生单位。
- (8) 联单保存期限为五年; 贮存危险废物的, 其联单保存期限与危险废物贮存期限相同。产生单位、运输单位和接受单位需要延期保存联单的, 应征得环境保护行政主管部门的同意。

7.1.4.3 固体废物污染防治措施建议

对固体废弃物实行从产生、收集、运输、贮存、再循环、再利用、加工处理直至 最终处置实行全过程管理,加强固体废弃物运输过程中的事故风险防范,按照有关法律、法规的要求,对固体废弃物全过程管理应报当地环保行政主管部门等批准。

7.1.5 土壤及地下水污染防治措施

根据工程分析结果,本项目可能对土壤、地下水产生污染影响的污染源为电镀生

产装置区、化学品库区、危废暂存点、废水收集罐区。本项目土壤、地下水污染防治措施按照源头控制,分区防治的原则,针对本项目污染特点,提出针对性的污染防治措施。

7.1.5.1 源头控制

为了保护地下水环境,采取措施从源头上控制对地下水、土壤的污染。拟建工程 采取的防止地下水、土壤污染的主动控制措施从生产过程入手,在工艺、管道、设备、 给排水和车间布置等方面均采用了泄漏控制措施,从源头最大限度降低污染物质泄漏 的可能性和泄漏量。

- (1) 实施清洁生产和循环经济,减少污染物的排放量,减少进入外环境污染物。
- (2) 从设计、管理各种工艺设备和物料运输、贮存上,防止和减少污染物的跑冒 滴漏: 合理布局,减少污染物泄漏途径。
 - (3) 收集的危险废物及时转运,减少废物堆存的时间,进一步降低泄露风险。
- (4)建立检查维护制度,定期检查维护管网、阀门以及防渗、防流失设施,发现有损坏可能或异常,应及时采取必要措施,避免地下水、土壤污染。

7.1.5.2 分区防渗

污染分区技术经济可行性分析:通过工程分析提供的可能泄漏到地面的物质特性、种类和工程水文地质条件,按照《国家危险废物名录》、《危险废物鉴别标准》(GB5085.1-7-2007)的规定对全厂区域进行污染分区,根据不同的区域参照不同的环境保护标准要求,设计不同的防渗方案,即满足不同地质条件、不同工程内容的要求,具有针对性和可操作性,与采用同一方案铺砌防渗层相比可节省大量投资。

华中表处园交付给企业的车间没有采取防渗措施,企业根据危险废物储存或者污染物泄漏的途径和生产功能单元所处的位置,将车间可划分为非污染防治区、一般污染防治区和重点污染防治区,各区地下水污染防治措施要求详见下表 7.1-3。

污菜 类		生产单元	渗透系数要求	防渗设计
- L	77. 7.45	电镀装置生产区、原	等效黏土防渗层	①电镀生产区地面按三布六油施工,墙柱以
重点	防 渗	料仓库区、危废暂存	Mb≥6m,	窗台高度为标准做环氧二布四油防腐。
\geq	<u>ζ</u>	点、废水收集罐区、	K≤1.0×10 ⁻⁷ cm/s; 或	②化学品仓库、危废暂存点的地面要求:环
		废水管网	参照 GB18598 执	氧乙烯基玻璃衬里,厚度 2mm(乙烯基五

表 7.1-3 地下水污染防治分区表

		行	步七油+1mm 厚乙烯基砂浆重防腐层),再用 5~10mm 厚的 PP 板做高度至少 12cm 托盘防护。 ③污水管沟、废水收集罐区采用钢筋混凝土浇筑,并采用五步七油处理。
一般防渗区	制冷装置区、化验 室、实验室	等效黏土防渗层 Mb≥1.5m, K≤1.0×10 ⁻⁷ cm/s;或 参照 GB16889 执 行	采用环氧树脂层+砂浆水泥地面、地板砖地 面或花岗岩地面等
简单防渗 区	办公区、工件及成品 装卸区等		一般地面硬化

7.1.5.3 地下水风险事故应急响应预案

项目地下水污染源是主要来自电镀生产装置区、污水管网、废水收集罐、危废暂存点等。针对不同地下水风险事故状态下采取相应的防范与应急措施。

- (1)除按要求进行分区防渗结构建设外,应定期对各区防渗结构进行检查,发现 防渗结构出现问题,应及时修复,使其满足相应区域防渗要求。
- (2)结合华中表处园定期监测区域内地下水水质,及时发现可能发生的地下水污染事故。根据监测结果,找出污染源并进行封闭、截流,防止继续扩散。
- (3)当发现污染源泄漏,应立即进行堵漏、切断污染源头阀门等有效措施,阻止 污染物进一步泄漏,已泄漏于地面物料应及时进行收集、吸附等地面清理措施。
- (4)对已经发生的地下水、土壤污染事故,应及时向环保管理部门汇报,并采取相应的治理与修复措施。

7.1.5.4 地下水监控

为了掌握本工程周围地下水环境质量状况和地下水体中污染物的动态变化,应对该项目所在地周围的地下水水质进行定期监测,以便及时准确地反馈工程区域地下水水质状况,为防止本工程对地下水的事故污染采取的措施提供依据。

根据地下水流向、污染源分布情况及污染物在地下水中的扩散形式,以及 HJ610-2016的要求,建议企业依托华中表处园区在厂区及其周边区域布设不少于3个 地下水污染监控井,建立地下水污染监控、预警体系,主要记录地下水水位和地下水 污染物浓度,监测因子和频次可参照本报告地下水环境监测计划相关内容。

7.1.5.5 土壤监控

为了掌握项目对区域土壤环境的影响,依托华中表处园整体环境质量监测,监测点位同土壤环境质量现状监测点位,监测指标包括 pH 值、总铬、总镍、总锌等,每年监测 1 次。

7.2 施工期环境保护措施

7.2.1 大气污染防治措施

从源头上减少装修粉尘进入到周围空气环境中,可采取以下措施:合理安排装修活动,尽量避免在同一时间出现多个扬尘产生点。建筑材料堆放点必须硬化,防治于室内,减少粉尘和二次扬尘产生。采取洒水湿法抑尘,对建筑进行定期洒水,保持地面湿度。要注意堆料的保护,采取有效措施防治堆料的扬尘污染,对材料进行适当遮盖。适当情况下,可关闭门窗装修,装修工人佩戴口罩。

为了预防和控制厂内建筑工程室内环境污染,保障职工健康,该厂房应在建筑工程及室内装修期间,按照《民用建筑工程室内环境污染控制规范》要求,进行科学的工程设计,不采用该标准禁止的建筑材料,选用低毒性、低污染,符合GIA标准要求的建筑材料和装饰材料,使建筑工程及室内装修期间室内空气中的有害人体健康的甲醛、苯、氨、挥发性有机物等气体能达到《室内空气质量标准》(GB/T18883-2002)要求。装饰施工时间还应尽量缩短,经常做到通风换气,以减缓装饰材料对环境空气产生的影响和人体的健康危害。

7.2.2 噪声污染防治措施

施工期的噪声污染主要来自于装修,装修活动产生的噪声主要为凿打(内墙)声、 电钻声和物料撞击声,应采取相应措施防止噪声影响周围环境和人们的正常生产生活。 主要措施有:

- (1) 合理安排装修计划和装修机械设备组合以及装修时间,避免在中午(12:00-14:00)和夜间(22:00-6:00)装修,避免在同一时间集中使用大量的动力机械设备。
- (2) 从控制声源和噪声传播以及加强管理等几个不同角度对装修噪声进行控制。 分述如下:
 - ①控制声源:尽可能选择低噪声的机械设备;一切动力机械设备都应该经常检修,

特别是那些会因为部件松动而产生噪声的机械,以及那些降噪部件容易损坏而导致强噪声产生的机械设备。

- ②控制噪声传播:将各种噪声比较大的机械设备远离环境敏感点,并进行一定的隔离和防护消声处理,装修时尽量关闭门窗。
- ③加强管理:对车辆造成的噪声影响要加强管理,材料运输车辆尽量采用较低声级的喇叭,并在环境敏感点附近限制车辆鸣笛等。

7.2.3 废水污染防治措施

本项目不设施工营地,装修人员为周边居民,其生活污水与华中表处园内其他生活污水一样,进电镀废水深度处理车间处理达标后排放。

7.2.4 固体废物防治措施

在项目装修期间所产生的固体废弃物主要是装修人员的生活垃圾和建筑垃圾。建筑垃圾应及时清运,集中处理,对于运送散装建筑材料的车辆,必须按照有关规定用蓬布进行遮盖,以免物料洒落。

对于装修人员聚居地的生活垃圾,应收集后及时交由环卫部门处理。

7.3 环境保护投资及"三同时"验收清单

本项目工程建设投入总计为 2000 万元,其中环保设施投入约 166 万元,占工程建设投资 8.3%。项目竣工环境保护"三同时"验收清单列入表 7.3-1。

表 7.3-1 项目竣工环境保护"三同时"验收清单

类	别	排污工艺装置及过程	治理方法或措施	规模	治理效果及目标	投资 (万元)
		镀槽废气	经集气罩收集进入 1#酸雾净化塔处理后 尾气经 301#厂房 35m 高烟道排放	13800m³/h	达到《电镀物综合排放标准》	45
	 废 气	酸洗槽、活化、出光等工序废 气	经集气罩收集进入 2#酸雾净化塔处理后 尾气经 301#厂房 35m 高烟道排放	24000m ³ /h	(GB 21900-2008) 表 5 标准	42
		电镀生产车间无组织废气	加强管理,设置 200m 卫生防护距离	/	达到《大气污染物综合排放标准》(GB16297-1996)表2二级标准	/
污染	废水	生产、生活废水	分类设置高浓有机废水、高浓酸性废水、 前处理废水、、高浓锌络废水、络合废水、 高浓含铬废水、含铬废水、综合废水、高 浓重金属废水、高浓地面清洗水等废水 管,收集进入废水收集罐后,进入电镀废 水深度处理车间处理达标排放	/	本项目废水满足华中表处园电镀废水深度处理车间进水要求	8
防治措施	噪声	车间噪音设备	隔声减震降噪	/	厂界噪声贡献值符合《工业企业厂界环境噪声排放标准》 (GB12348-2008)3 类区限值	3
	固体废	含油槽渣、碱性废槽液、酸性 废槽液、含锌、镍、铬等重金 属废过滤渣、废钝化槽液、废 过滤芯、废危化品包装	危废设加盖桶收集,暂存于车间危废暂存 点,各类危险废物送华中表处园危废暂存 间暂存,定期交由有资质的单位清运处 置。	危废暂存点 5m²	《危险废物贮存污染控制标准》(GB18597-2001)及其 2013 年修改单要求	5
	物	生活垃圾	委托环卫部门统一清运	/	不排放	
	地下水和土	重点防渗区	电镀生产区地面"三布六油"; 化学品仓库、危废暂存点地面乙烯基五步七油+1mm 厚乙烯基砂浆重防腐层; 污水管沟、废水收集罐区采用钢筋混凝土浇筑,并采用五步七油处理。	/	避免泄露有毒有害物质污染地 下水和土壤	26
	壤	一般防渗区	采用环氧树脂层+砂浆水泥地面、地板砖	/		

			地面或花岗岩地面等			
	事	事	原料库区、危废暂存点地面采取 PP 塑料 托盘防腐防渗,托盘内设 PP 塑料格栅, 设置 PP 塑料围堰	/	避免泄露有毒有害物质污染地 下水和土壤	5
	故防	泄露、火灾等环境风险事故	消防用水依托华中表处园内消防水系统, 车间内按照消防要求配置消防设施	/	通过消防验收	8
	范		依托华中表处园内事故应急池,企业自建 管网与华中表处园事故水管网连通	/	避免事故废水排放	3
			编制环境风险应急预案	/	报主管部门和华中表处园备案	6
	小计					151
		环境监测	运行期污染物排放定期监测,定期做好 监测记录	强化环境保护管 理机构职能	监控污染物达标排放	8
		环境管理档案	建立完善的环境管理档案			
环总		排污许可证	向环境主管部门申请办理排污许可证			1
境 管		环境保护设设施运行记录	定期做好运行记录			1
理	环境保护专职人员培训计划和培训 记录		企业对环境保护专职人员进行环保培训,做好培训记录			2
		排污口规范化设置	设置标志牌等			1
	小计					15
	总计				166	

7.4 华中表处园与入驻企业环境责任划分

本项目给水、排水、供热、废水处理、固废暂存等依托华中表处园,自行建设废 气治理设施,企业与华中表处园环境责任划分详细见下表:

表 7.4-1 华中表处园与入驻企业环境责任划分一览表

类别		环境责任
环保	园区	园区负责对其提供的公用设施委托有资质单位编制环境影响报告及清洁生产审核报告,并进行竣工环保验收、总量申请、排污许可证申报等。
手续	企业	各入驻企业自行委托有资质单位编制环境影响报告及清洁生产审核报告;自行进行竣工环保验收及排污许可证申报,园区负责配合,总量由园区划拨。
废水	园区	建设污水处理站,负责污水处理站日常运行管理,确保废水达标排放,并满足总量控制要求;确保污水处理站在事故状态下废水不排入外环境。
处理	企业	确保废水按照园区管理要求进行分类收集,废水排放浓度及排放总量满足 华中表处园电镀废水深度处理车间进水水质要求。
	园区	确保锅炉房废气达标排放,确保电镀废水深度处理车间废气达标排放。
废气 处理	企业	自行建设各类废气处理措施,确保生产线各类废气达标排放,并鼓励交由有资质的单位进行运维。
	共同 责任	确保园区无组织废气达标排放,各入驻企业按照相关环保要求及园区相关管理措施要求加强废气收集,加强生产管理。
地下 水污	园区	园区负责除生产厂房外的所有区域防渗,交付企业的生产厂房不做防渗措施。
染防 治	企业	所有入驻企业按照相关环保要求对厂房进行防渗。
固废 处理	园区	园区负责对电镀废水深度处理车间、锅炉房、检测中心等提供公共服务及 企业生产线上所产生的各类固废进行收集、暂存,确保危废按照相关环保 要求交由有资质单位处理,确保固废零排放。生活垃圾由园区统一收集交 由市政部门处理。确保废弃物处置中心各类固废规范存储。
	企业	对生产线产生的各类固废进行收集、暂存并及时转运至园区设置的危废暂存间,各企业产生的危废自行委托有资质单位处理。
危险 化学 品存	园区	园区负责申报相关许可证,按照安评报告、环评报告及其相关批复负责危险化学品仓库及其配套风险设施建设,对危险化学品仓库按照相关安全要求进行管理,根据企业生产需要进行统一配送并监督使用。
储	企业	企业自行购买危险化学品,部分化学品按照园区要求集中存储于园区设立 的危险品仓,按照相关安全要求及园区要求进行领用。
管网 建设	园区	园区负责承租区域外的所有管网建设,确保各类管网按照相关规范进行建设维护。
及维 护	企业	企业对承租区域内的各类管网进行建设维护。
风险 防控	园区	园区负责生产车间外的所有安全及环境风险设施建设,确保各类风险设施 按照相关规范进行建设维护。

	企业	各入驻企业对生产车间内的风险设施进行建设、维护。
	共同	园区及各入驻企业均应编制应急预案,企业按照园区管理要求针对应急预
	责任	案进行互动演练。
环境监测	园区	园区负责按照国家环保要求制定监测方案进行日常监测,包括污染源监测 (锅炉废气、电镀废水深度处理车间废气、电镀废水深度处理车间排水、厂界噪声)及环境监测(环境空气、地表水、地下水、土壤、敏感点噪声),对入驻企业环保设施运行情况进行监管。
	企业	各入驻企业按照国家环保要求制定监测方案进行日常监测,主要为污染源监测(生产线废气、排水、厂界噪声)。

注: 表中园区指华中表面处理循环经济产业园。

7.5 项目环境可行性分析

7.5.1 产业政策符合性分析

7.5.1.1 与《产业结构调整指导目录(2019年本)》符合性分析

对照《产业结构调整指导目录(2019年本)》,其中关于电镀行业淘汰类工艺包括: 1、含有毒有害氰化物电镀工艺(电镀金、银、铜基合金及予镀铜打底工艺除外); 2、含氰沉锌工艺,本项目不涉及含氰电镀工艺,项目主要产品种类、生产规模、生产工艺、生产设备均不属于《产业结构调整指导目录(2019年本)》中鼓励类、限制类及淘汰类,因此本项目属于允许类。

本项目已取得湖北省固定资产投资项目备案证,登记备案项目编码 2019-421004-33-03-062263。根据该备案证认定,该项目符合法律、法规及其他有关规定,符合国家产业政策、投资政策的规定,符合行业准入标准,不属于政府核准或审批而进行备案的项目。

7.5.1.2 与《限制用地项目目录》及《禁止用地项目目录》符合性

本项目租用华中表面处理循环经济产业园 301 厂房 4 楼,本项目建设内容不在《限制用地项目目录(2012 年本)》及《禁止用地项目目录(2012 年本)》之列。

7.5.2 规划符合性分析

7.5.2.1 与城市整体规划符合性分析

根据《荆州市城市总体规划(2011-2020)》,荆州市产业发展总体战略为: "重 点发展汽车零部件、化工、石油设备制造、电子、生物医药等产业及旅游业", "第 二产业: 重点发展汽车零部件、化工、石油设备制造、电子等战略性产业",本项目属于汽车零部件制造项目,与荆州市产业发展总体战略相符。

荆州市产业空间布局规划为: "荆州市中心城区以机械制造、轻工纺织、精细化工、电子、生物医药、新能源、新材料、旅游、商贸为主导",本项目选址与荆州市产业空间布局相符。

荆州市近期建设发展重点区域规划为: "重点建设城东工业区,发展机械制造、 轻工纺织、精细化工、电子、生物医药、新材料等工业",本项目选址位于近期建设 发展重点区域,且属于该区域重点发展行业。

7.5.2.2 与园区土地利用规划符合性分析

根据《军民融合暨光通讯电子信息产业园 A 区控制性详细规划》中的功能定位: "光通讯和表面处理产业园区。"本项目属于表面处理行业,符合军民融合暨光通讯电子信息产业园 A 区的功能定位和产业发展目标。

本项目租用华中表面处理循环经济产业园厂房,用地属于工业用地,符合土地利用规划。

7.5.3 与军民融合暨光通讯电子信息产业园 A 区规划环评及批复符合性分析

对照《军民融合暨光通讯电子信息产业园 A 区控制性详细规划环境影响报告书》中负面清单:表面处理组团入驻企业民用产品尽量使用低铬或三价铬钝化替代六价铬,锌、铜、硬铬的利用率必须超过 80%;镍利用率必须超过 85%;装饰铬利用率必须超过 24%。"本项目锌利用率为 82.65%、镍利用率为 91.81%、铬利用率为 63.39%,不在军民融合暨光通讯电子信息产业园 A 区负面清单之列。

对照《关于军民融合暨光通讯电子信息产业园 A 区控制性详细规划环境影响报告书的审查意见》(荆环保审文〔2018〕33号),本项目建设符合该园区规划环评的审查意见。

表 7.5-1 本项目与军民融合暨光通讯电子信息产业园 A 区规划环评批复要求对比表

月長	军民融合暨光通讯电子信息产业园 A 区规划环评批复 要求	本项目建设情况	是否符 合
1	园区各类开发活动应严格遵循园区控制性详细规划确定的各功能区区用地要求。园区规划用地内现有农用地须依法做好报批工作和征地补偿工作,同时应做好工业	本项目租用华中表处园厂 房,华中表处园已取得土 地证,用地性质为工业用	符合

	用地性质的调整工作,在依法取得合法手续前,不得开	地。	
2	发利用。 严守生态保护红线,优化园区产业结构、空间布局,促进园区产业集约与绿色发展。结合《荆州市"一城三区、一区多园"产业发展规划》,进一步优化园区空间布局,细化园区内的产业布局,减缓对周边环境的影响。危化品集中贮存区应妥善选址,尽量避免对环境敏感目标的不利影响。严格设置表面处理组团环境防护距离,优化表面处理组团酸性气体排气筒的高度和位置,减缓对周边大气环境的不利影响。园区内现有的村庄、居民应逐步实施搬迁。园区入驻企业应落实环境防护距离控制要求,防护距离内不得新建居民住宅等环境敏感点。	本项目排气烟道高 35m,符合环保要求。恒镁生产车间设置 200m 防护距离,卫生防护距离范围内的居民已搬迁完毕。	符合
3	坚守环境质量底线,严格污染物总量管控。园区规划实施中新增大气污染物、水污染物、重金属污染物的排放量应按照国家有关污染物排放总量控制的要求严格执行,确保园区内主要污染物满足总量控制指标和区域环境容量要求。完善园区环境监测体系,按照监测计划开展日常监测工作,编制年度环境质量报告书。鉴于园区废水中含重金属污染因子,其持续排放可能会对长江该江段水生动植物等造成不利影响,园区在实施大规模表面处理项目前,应开展该江段水生生态调查并论证重金属污染物排放入江量的合理性,同时开展包括江段底泥、样方等环境生态的监测工作。	本项目总量纳入华中表处园总量管理,华中表处园批复总量为: COD350t/a、NH3-N 29.75t/a、铬0.945t/a、镉0.011t/a、铜2.8t/a、镍2.8t/a、锌7.28t/a、银0.246t/a,其中COD和NH3-N指标已进行排污权交易,重金属总量指标由荆州市内调剂。本项目总量纳入华中表处园管理,不单独申请总量。	符合
4	各类入园项目应严格遵循园区规划要求并提出环境准 入门槛,鼓励发展污染符负荷低、技术含量高、资源节 约、有利于园区主导产业链延伸的项目。新建入园项目 应明确水资源重复利用率、单位产品新鲜水消耗量、万 元产值主要污染物排放强度等清洁生产准入指标要求。	企业满足华中表处园规定 的准入条件,企业清洁生 产水平为II级。	符合
5	遵循"减量化、再利用和资源化"的原则,采取水资源阶梯利用和中水回用等措施,减少水资源消耗,降低废水排放量,提高区域水资源综合利用率,从源头削减废水排放量。加强园区燃气管道建设和供热蒸汽管道建设,园区企业应采用集中供热方式和使用天然气、生物质等清洁能源,以减少大气污染物的排放。鼓励采用能源阶梯利用、余热利用等低能耗先进生产工艺的建设项目入园。	本项目依托华中表处园电镀废水深度处理车间处理后部分回用,废水回用率为 40.8%。企业不自建锅炉,采用荆州开发区园区蒸汽。	符合
6	贯彻环保有限、基础设施先行的原则,园区排水应实施"雨污分流"。应结合园区产业结构和布局,合理规划和布局园区配套的工业污水和生活污水收集管网,明确建设时序,加快完成管网建设工作。严控园区表面处理产业组团含重金属废水排放,表面处理产业组团废水中重金属污染物须经分类收集、分质处理达到《电镀污染物排放标准》(GB21900-2008)相应排放限值后,与其他工业废水一起经园区专业污水处理设施处理达到《电镀污染物排放标准》(GB21900-2008)表 2 标准、《城镇污水处理厂污染物排放标准》(GB18918-2002)-级 A 标准以及《城水污水再生利用工业用水质》	本项目依托华中表处园分质、分类废水处理系统, 经处理后达标排放。 本项目产生的危废存放在 车间内危废暂存点,转运 至华中表处园危废暂存间 暂存,交由有资质单位处 置,污泥每天清运。	符合

	(GB/T19923-2005)中相应排放标准限值要求后,通过荆州开发区排江工程管道排入长江。园区相关企业排放的废水需设置在线、视频监控系统及自控阀门。按照"资源化、减量化、无害化"的原则,完善固体废物处理处置管理制度和设施,提高工业固废的综合利用率,促进工业固废在企业内部和园区内部回收使用或综合利用。危险废物须送至有危废处理资质的单位妥善处置,园区内应按规定建设好固体废物贮存设施,危险废物临时贮存场所的建设必须符合《危险废物贮存污染控制标准》及相关技术标准规范要求,危险废物临时储存时间不得超过一年。		
7	加强环境风险防范和应急处置,园区应制定和完善环境风险事故应急预案。入园企业应与所在地政府将环境风险事故预案进行对接和协调,并纳入当地各级政府应急管理体系。入园企业必须严格落实各项环境风险防范措施和应急预案,定期组织不同类型的环境应急实战演练,提高防范和处置突发环境事件的技能,杜绝重大环境污染事故发生。	企业制定风险应急预案, 与华中表处园、军民融合 暨光通讯电子信息产业园 A区以及当地政府环境风 险应急预案进行对接和协 调。并定期进行应急演练, 以提升事故应对能力,降 低事故影响程度。	符合

7.5.4 与华中表面处理循环经济产业园环评符合性分析

对照华中表面处理循环经济产业园环评报告,对入驻企业提出了明确的环保要求, 本项目与华中表处园环保要求对比如表 7.5-2 所示,企业符合华中表处园环保要求。

表 7.5-2 本项目与华中表处园环保要求对比一览表

序号	类别	华中表处园要求	本项目建设情况	是否 符合
8	总体 要求	入驻企业根据加工零部件的品种、数量等优先选用高效低耗连续式处理设备,需要满足《电镀行业清洁生产评价指标体系》(国家发展和改革委员会、环境保护部、工业和信息化部公告,2015 年第 25 号)II级及其以上基准值,达到国内清洁生产先进水平。华中表处园不得引入镀铅、镀汞、镀砷企业。	企业能够达到国内清洁 生产先进水平,不含镀 铅、镀汞、镀砷	符合
9		满足《电镀行业规范条件》(中华人民共和国工业和信息化部 2015 年第 64 号); 满足《产业结构调整指导目录》。	企业符合国家产业政策 要求和行业规范要求	符合
10	产业 政策 及规	不得引入《部分工业行业淘汰落后生产工艺装备和产品指导目录(2010年本》(中华人民共和国工业和信息化部工产业[2010]第122号)。	本项目不含淘汰落后工 艺装备、产品	符合
11	划	华中表处园及入驻企业使用或排放列入《优先控制 化学品名录(第一批)的化学品,应遵循下列原则: 纳入排污许可制度管理、实施限制措施、实施清洁 生产审核及信息公开制度	企业将按照规定执行排 污许可制度,企业不含 限制使用原料,并将按 照要求实施清洁生产审	符合

			核及信息公开	
12		不得采用纳入《淘汰落后生产能力、工艺和产品的目录》的生产能力、工艺装备、产品。	企业未采用纳入《淘汰 落后生产能力、工艺和 产品的目录》的生产能 力、工艺装备、产品	符合
13		满足《荆州市重金属污染综合防治规划》相关要求。	企业满足该规划要求	符合
14		淘汰无喷淋、镀液回收等措施普通单槽清洗;淘汰 砖砼结构槽体。	企业采用全自动连续生 产线	符合
15		电镀生产环节包括清洗槽在内的槽液总量不少于30000 升;电镀生产年产值在2000万元以上;单位作业面积产值不低于1.5万元/平方米;作为中间工序的企业自有车间不受规模限制。	槽液总量远大于 30000 升,电镀生产年产值在 2000 万以上,单位作业 面积产值不低于 1.5 万 元/m ²	符合
16	生产 - 規模	企业宜选用低污染、低排放、低能耗、低水耗、经济高效的清洁生产工艺,推广使用《国家重点行业清洁生产技术导向目录》的成熟技术;	企业属于清洁生产国家 先进水平,技术工艺成 熟	符合
17		品种单一、连续性生产的电镀企业要求自动生产 线、半自动生产线达到 70%以上;	企业为全自动生产线	符合
18	备	生产区域地面防腐、防渗、防积液,生产线有槽间 收集遗洒镀液和清洗液装置;	企业生产装置区按照要求防腐、防渗、防积液, 生产线有槽间收集遗洒 镀液和清洗液装置	符合
19		生产线配有多级逆流漂洗、喷淋等节水装置及槽液回收装置,槽、罐、管线按"可视、可控"原则布置,并设有相应的防破损、防腐蚀等防护措施;改进挂具和镀件的吊挂方式,减少镀液带出量,降低清洗水的浓度;工件出镀槽时,增加空气吹脱设施,减少镀液带出量。	生产线配有多级逆流漂洗、喷淋等节水装置及槽液回收装置,槽、罐、管线按"可视、可控"原则布置	符合
20	资源 消耗	镀铜、镀镍、镀硬铬以及镀贵金属等生产线配备工艺技术成熟的带出液回收槽等回收设施;电镀企业单位产品每次清洗取水量不超过0.04t/m³,水的重复利用率在30%以上。	企业设有回收设施,单位产品每次清洗取水量0.0025吨/平方米,水的重复利用率为70.6%,大于30%。	符合
21		企业符合环保法律法规要求,依法获得排污许可证,并按照排污许可证的要求排放污染物;定期开展清洁生产审核并通过评估验收。	企业将按照要求执行排 污许可制度,按照排污 许可要求排放污染物, 定期开展清洁生产审核 并通过评估验收。	符合
22	环保 设施	企业有废气净化装置,废气排放符合国家或地方大气污染物排放标准。企业产生的危险废物按照《国家危险废物名录》(2016 年版)和《危险废物贮存污染控制标准》(GB18597-2001),设置规范的分类收集容器进行分类收集,并按照《危险废物转移联单管理办法》(国家环境保护总局令第5号)要求,交由有处置相关危险废物资质的机构处置。厂界噪声应符合《工业企业厂界环境噪声排放标准》(GB12348-2008)相关要求。	企业废气采用酸雾净化 塔处理后达标排放,危 废贮存、转运、处理与 处置符合要求,厂界噪 声符合标准要求。车间 按照要求进行分区防 渗。	符合

		入驻企业生产车间防渗要求满足《环境影响评价技术到则 地下水环境》(HJ610-2016) 相关要求。		
23	推荐 技术	入驻项目推荐无氰电镀、三价铬电镀技术、多级逆 流清洗技术、喷射水洗技术等	企业采用无氰电镀、三价铬电镀技术、多级逆流清洗技术、喷射水洗技术,技术先进	

7.5.5 项目与长江相关政策符合性分析

7.5.5.1 项目与长江经济带专项集中整治行动符合性分析

根据省委办公厅、省政府办公厅《关于迅速开展湖北长江经济带沿江重化工及造纸行业企业专项集中整治行动的通知》(鄂办文〔2016〕34号)要求: "不得在沿江1公里范围内布局重化工及造纸行业项目,正在审批的,一律停止审批;已批复未开工的,一律停止建设。"

根据湖北省推动长江经济带发展领导小组办公室文件第 10 号《关于做好长江经济带沿江重化工及造纸行业企业专项集中整治后续有关工作的通知》要求: "(一)关于产业布局重点控制范围。产业布局重点控制范围主要为沿长江及其一级支流的矿产资源开采,煤化工,石化行业的石油炼制及加工、化学原料制造,冶金行业的黑色金属和有色金属冶炼,建材行业的水泥、平板玻璃和陶瓷制造、轻纺行业的印染、造纸业等。(二)关于后续建设项目。严格按照鄂办文(2016)34号文件要求,对涉及上述产业布局重点控制范围的园区和企业,坚持'从严控制,适度发展'的原则,分类分情况处理,沿江1公里以内禁止新布局,沿江1公里以外从严控制,适度发展,具体为:(1)沿江1公里内的项目。禁止新建重化工园区,不再审批新建项目。……(2)超过1公里的项目。新建和改扩建项目必须在园区内,按程序批复后准予实施。"

根据荆州市委办公室、市政府办公室《关于印发<荆州市长江经济带沿江重化工及造纸行业企业专项集中整治行动实施方案>的通知》(荆办文〔2016〕26号)要求:"不得在沿江1公里范围内新、改、扩建重化工及造纸行业项目,正在审批的,一律停止审批;已批复未开工的,一律停止建设。"

根据本次评价工作实地调查及建设方提供的项目相关资料,该项目拟建地位于长江(荆州城区段)北面,厂区南厂界距离长江(荆州段)距离约为12.77公里,不属于重化工及造纸行业项目,因此该项目不属于上述三份文件中所要求的"一律停止审批/

不再审批"的项目。

7.5.5.2 与《省经信委关于印发贯彻落实长江大保护专项行动实施方案的通知》(鄂经信重化函[2017]438 号)的相符性分析

《省经信委关于印发贯彻落实长江大保护专项行动实施方案》提出"1.严格重化工产业准入。严格执行国家和省相关产业政策,严禁在长江干流及主要支流岸线1公里内新建重化工及造纸行业项目,严控在长江沿岸地区新建石油化工和煤化工项目。2. 持续开展化工污染专项整治行动。全面调查摸清全省化工企业、化工园区和建设项目情况,配合省环保厅制定全省化工污染综合治理实施方案,指导地方政府对园区外化工企业实施搬迁改造。

本项目为电镀项目,位于华中表面处理循环经济产业园内,厂区南厂界距离长江 (荆州段) 距离约为 12.77 公里,符合要求。

7.5.6 与《荆州市重金属污染综合防治规划》符合性分析

《荆州市重金属综合防治规划》基准年为 2007 年,规划期为 2011~2020 年,分为近期和远期两个阶段。2015 年为近期水平年,2020 年为远期水平年。

(1)规划主要重金属范围:第一类规划对象:铅(Pb)、汞(Hg)、镉(Cd)、铬(Cr)和类金属砷(As)及钒(V)等生物毒性严重且显著的元素。

第二类规划对象:具有一定毒性的一般重金属,主要有锰(Mn)、镍(Ni)、铜(Cu)、锡(Sn)、锌(Zn)、钡(Ba)等。

(2) 规划行业

针对荆州市涉重污染源统计,对各行业污染物产排强度以及区域经济发展的特点确定出荆州市重金属污染防治重点防控行业:铅蓄电池业、有色金属冶炼业、金属表面处理及热处理加工业、化学原料及化学制品制造业等。

- (3)重点规划单元为沙市区、荆州开发区、石首市、松滋市、监利县、洪湖市以及荆州区七个重点区域。
 - (4) 重点防控区域防治措施

荆州开发区需对现有的涉重企业加强治理力度,推进、完善涉重企业的清洁生产审核制度。同时对开发区内的环境现状进行监测腾出环境容量留给拟入驻的规模化涉

重企业。

①大力发展循环经济,建设环境友好型企业,加大对荆州开发区循环经济产业链的建设,整合资源,鼓励先进技术企业做大做强,严格准入机制,对新建项目必须采用先进的工艺和设备,同时控制涉铅企业数量,淘汰整合小型涉重企业。

②针对蓄电池行业,应该加强铅酸废水的回收利用;在生产过程中产生的铅尘应 安装脉冲袋式除尘设备进行净化捕集;对生产中的铅渣进行有效管理,登记储运和综 合处置利用。

- ③完善企业空气和水中铅含量的监测,加强废水、废气中重金属在线监测系统的 建设,完善对企业工人及周边居民血铅浓度检测机制。防止铅污染事件发生。
 - (5) 金属表面处理及热处理加工业防治措施

①调整产业结构

淘汰含氰电镀工艺(电镀金、银、铜基合金及预镀铜打底工艺,暂缓淘汰)。采用先进技术,包括原辅材料、设备与工艺,针对本厂产品不同要求合理运用。重视前处理与后处理工艺,特别是要加强处理方法与工艺合理选用。

②推行清洁生产

严格按照《循环经济促进法》、《清洁生产标准 电镀行业》和《电镀污染物排放标准》要求进行建设和生产。

前处理工序,采用低温除油和无磷除油剂及剥离型清洗剂,用水基清洗剂代替有机溶剂除油,用超声波清洗技术提高除油工作效率,降低前处理清洗水中的 COD 值和 COD 总量。

镀锌采用无氰化物原材料,大力推广酸性氯化钾镀锌工艺,镀后以钼酸盐钝化和 三价铬钝化取代传统钝化工艺。镀铬一方面采用含稀土元素添加剂的低质量浓度镀铬 工艺;另一方面以合金镀层取代铬层,如锡镍合金、锡钴合金及非晶态镍钨合金等。

同时要大力开展三价铬镀液镀铬和代铬层的化学镀镍磷合金镀层的研究应用。镀镍推广厚铜薄镍工艺及铜锡合金代镍工艺,大力降低金属镍的消耗。镀镉以锌做为主要成分,开发含少量其它金属形成的合金镀层,如锌铁合金、锌镍合金、锌钴合金以及锌为主要成分的三元合金。

合理选择镀件在挂具上的装卡方向,使镀液排出通畅,减少镀液带出量,这对固

定产品的大批量生产尤其重要。改进清洗方式,生产线上增设回收槽或采用喷淋、振动及气吹等形式,最大限度地回收电解液。大力推行逆流漂洗,采用多级(如三级、四级)逆流漂洗和闭路循环水利用系统,做到少排放,甚至零排放。

节约能源,采取确实措施,杜绝电镀生产中普遍存在的各种能源的跑、冒、滴、漏现象。应用节能技术,将先进的节能技术应用到电镀生产中,努力降低电、煤及油等能源的消耗。例如,把变频技术应用在电镀流水线上,控制电机转速、水泵流量及风机风量,在满足正常工艺要求的情况下达到适度的节能。

③强化污染治理

电镀废水处理根据废水性质、组分及企业的情况和处理后排放水质的要求,经综合技术经济比较后确定。常用的处理技术有:中和沉淀法、硫化物沉淀法、化学还原法、铁氧体法、电解法、吸附法、膜分离法、离子交换处理法。

本项目选址位于选址位于荆州开发区,属于荆州市重点防控区域;本项目属于电镀企业,属于荆州市重点防控区域。项目不含镀铅,不会增加区域铅排放量。项目依托华中表处园电镀废水深度处理车间处理废水,主要采用沉淀、膜分离法、离子交换处理法、生物处理等处理技术,废水排放满足《电镀污染物排放标准》相关要求;企业满足《电镀行业清洁生产评价指标体系》II级及其以上基准值,达到国内清洁生产先进水平,排放污染物满足《电镀污染物排放标准》相关要求。

综合上述分析,本项目符合荆州市重金属污染防治规划。

7.5.7 与《荆州市土壤污染防治工作方案》符合性分析

(1) 总体目标

以改善全市土壤环境质量为核心,保障农产品质量和人居环境安全。到 2020 年,全市重金属污染重点区域及有机污染集中区域土壤污染加重趋势得到有效遏制,土壤环境质量总体保持稳定,农用地和建设用地土壤环境安全得到基本保障,土壤环境风险得到基本管控。到 2030 年,全市土壤环境质量稳中向好,土壤环境风险得到全面管控。

(2) 加强农用地环境保护

严格控制在优先保护类耕地集中区域新建有色金属冶炼、石油加工、化工、电镀、制革等企业,加强对现有相关行业企业的监管。对工艺落后的企业要责令其限期整改、

转产或搬迁。

(3) 加强未利用地保护

结合重点工业行业清洁生产审核和行业落后产能淘汰工作,提高重金属行业准入 门槛和铅酸蓄电池行业落后产能淘汰工作。实施涉重金属重点行业清洁生产技术方案, 禁止新建落后产能或产能严重过剩行业的建设项目。

本项目租用华中表面处理循环经济产业园厂房,其土地性质为工业用地;企业符合行业准入条件及园区准入条件,企业建成运行后将按规定开展清洁审核。本项目建设符合该方案要求。

7.5.8 项目建设与"生态保护红线、环境质量底线、资源利用上线和环境准入负面清单" 要求的符合性

《"十三五"环境影响评价改革实施方案》(环环评(2016)95号)中提出的指导思想为: "以改善环境质量为核心,以全面提高环评有效性为主线,以创新体制机制为动力,以'生态保护红线、环境质量底线、资源利用上线和环境准入负面清单'(以下简称'三线一单')为手段,强化空间、总量、准入环境管理,划框子、定规则、查落实、强基础,不断改进和完善依法、科学、公开、廉洁、高效的环评管理体系。"

《关于以改善环境质量为核心加强环境影响评价管理的通知》(环环评(2016) 150号)明确提出: "为适应以改善环境质量为核心的环境管理要求,切实加强环境影响评价(以下简称环评)管理,落实'生态保护红线、环境质量底线、资源利用上线和环境准入负面清单'(以下简称'三线一单')约束,建立项目环评审批与规划环评、现有项目环境管理、区域环境质量联动机制(以下简称'三挂钩'机制),更好地发挥环评制度从源头防范环境污染和生态破坏的作用,加快推进改善环境质量,现就有关事项通知如下:一、强化'三线一单'约束作用"。

根据上述文件精神,现就本项目与"三线一单"相关要求进行分析。

7.5.8.1 生态保护红线

本项目位于华中表面处理循环经济产业园,经查阅《湖北省生态保护红线划定方案》(鄂政发〔2016〕34号),本项目选址地未被划入生态保护红线范围。

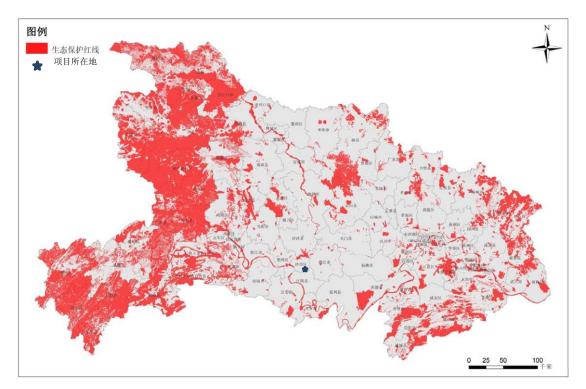


图 7.5-1 湖北省生态保护红线划定方案示意图

7.5.8.2 环境质量底线

项目选址地区域环境质量目标及其现状达标情况列入表 7.5-3。

环境质量达标情 环境要素 环境质量目标 环境质量现状 况 大气 GB 3095-2012/二类 GB 3095-2012/二类 不达标 GB 3838-2002/III类 GB 3838-2002/III类 达标 地表水 达标 声 GB 3096-2008/3 类 GB 3096-2008/3 类 (GB/T 14848-2017) /III类 (GB/T 14848-2017) /III类 达标 地下水 达标 土壤 (GB36600-2018)/二类 (GB15618-1995)/二类

表 7.5-3 项目选址地区域环境质量目标及其现状达标情况一览表

根据华中表处园环评报告及本项目环境影响预测分析,本项目在正常工况、各项 环保措施正常运行时,本项目对各环境要素的影响较小,不会改变各环境要素的环境 质量现状级别/类别。可见本项目符合环境质量底线相关要求。

7.5.8.3 资源利用上线

本项目所需热量依托华中表面处理循环经济产业园的供热管网,前期蒸汽来源于 国电长源热电厂蒸汽,待产业园内天然气锅炉建成运行后,蒸汽来源于产业园内,属 于清洁能源;本项目采取了多项节水措施,单位产品单次清洗用水用量可以达到清洁生产一级水平,符合行业规范要求。可见本项目符合资源利用上线相关要求。

7.5.8.4 环境准入负面清单

本项目位于军民融合暨光通讯电子信息产业园 A 区,经查阅《军民融合暨光通讯电子信息产业园 A 区控制性详细规划》、《军民融合暨光通讯电子信息产业园 A 区控制性详细规划环境影响报告书》、《关于军民融合暨光通讯电子信息产业园 A 区境影响报告书的审查意见》(荆环保审文〔2018〕33 号),本项目建设内容未被列入军民融合暨光通讯电子信息产业园 A 区禁止、限制等差别化环境准入条件和要求清单。经查阅《长江经济带发展负面清单指南(试行)》,本项目建设内容未被列入该文件中禁止建设类项目负面清单。

7.5.8.5 "三线一单"符合性结论

综上所述,本项目符合《"十三五"环境影响评价改革实施方案》(环环评〔2016〕 95号)及《关于以改善环境质量为核心加强环境影响评价管理的通知》(环环评〔2016〕 150号)中所提出的"三线一单"相关要求。

7.5.9 项目选址与环境保护规划功能符合性分析

7.5.9.1 区域环境现状

- (1) 环境空气:根据荆州市环境质量公报,荆州中心城区 6 项评价指标中可吸入颗粒物 (PM₁₀) 和细颗粒物 (PM_{2.5}) 2 项不达标。根据评价范围内监测数据,项目评价范围内,特征因子氯化氢满足《环境影响评价技术导则——大气环境》(HJ2.2-2018)表 D.1 的要求。
- (2)地表水:根据监测数据,长江水质能稳定达到《地表水环境质量标准》 (GB3838-2002)中的III类水域标准的要求,西干渠和豉湖渠满足V类水质,其 COD、BOD₅、氨氮、总磷等指标有出现不同程度的超标,超标主要原因为荆州市各河道受流域内的农业、居民生活污染影响。目前,荆州开发区内已实施了荆州中环水业有限公司荆州开发区 3 万吨生活污水处理设施改造工程建设项目,将收纳荆州开发区内的生活污水进行处理,将会对西干渠水质起到改善作用。
 - (3) 环境噪声:根据监测数据,拟建项目各厂界的噪声均能达到《声环境质量标

准》(GB3096-2008)中3类标准。

- (4)地下水:地下水采样点各监测指标均能达到《地下水质量标准》 (GB14848-2017)III 类标准要求。
- (5)土壤:根据监测数据,项目调查范围内土壤质量能够满足《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)表1第二类用地标准限值。

7.5.9.2 工程对环境敏感点的影响分析

项目对各污染源采取了相应的污染防治措施,通过污染防治措施进行治理后,排放的各类污染物可以满足相应的污染物排放标准要求及污染物总量控制要求,污染防治措施具有一定的环境可行性。

根据环境影响预测评价,正常工况下本工程对环境敏感点及环境保护目标的大气 污染及噪声影响较小,不会影响环境敏感点的环境功能要求;生产、生活废水依托华 中表处园电镀废水深度处理车间处理达标后排放。

7.5.10 项目厂址的合理性分析

本项目位于华中表面处理循环经济产业园厂房内,由外环境关系可知:四周目前主要为农田,规划为工业园。华中表处园是荆州市设立的电镀工业集中加工区,符合荆州市总体发展规划。项目所在地交通方便,基础设施规划齐全,项目周边 200m 范围内居民基本拆迁完毕,不涉及人口密集区和环境敏感点。

华中表处园规划的主要镀种有镀锌、镀镍、镀铬、镀银、镀铜、镀镉等。华中表处园污水处理设施集中建设,本项目污水水质、水量与华中表处园电镀废水深度处理车间相容,经其处理后可达标排放,满足环境管理要求,项目选址与外环境相容,选址合理。

8 环境影响经济损益分析

环境经济损益分析是环境影响评价的一项重要工作内容,其主要任务是衡量建设项目需要投入的环保投资和所能取得的环境保护效果,因此,在环境经济损益分析中,需计算用于控制污染所需投资和费用,同时还要核算可能收到的环境与经济实效。经济效益可以较直观,而环境效益和社会效益则很难直接用货币计算。本评价环境经济损益分析,采用定性与半定量相结合的方法进行简要的分析

8.1 经济效益分析

拟建项目总投资约 2000 万元人民币, 年表面处理面积约 6 万 m²。具有较好的经济效益。

8.2 社会效益分析

项目投产后主要会产生以下社会效益:

- ①本项目建设符合国家产业政策要求,产品市场前景也十分广阔。
- ②为当地及周边地区居民和下岗职工提供就业机会,缓解就业压力,增加经济收入,提高当地居民生活水平。
 - ③带动地方经济发展,增加国家财政税收。

综上所述,该项目建设将对地区国民经济和社会发展,特别是对带动区域经济的 发展产生积极的影响。

8.3 环境损益分析

8.3.1 环境设施分析

8.3.1.1 环保设施内容

《建设项目环境保护设计规定》第六十三条指出:"凡属于污染治理和保护环境所需的装置、设备、监测手段和工程设施等均属于环境保护设施"、"凡有环境保护设施的建设项目均应列出环境保护设施的投资概算"。

项目建成后,为了有效控制项目实施后对周围环境可能造成的影响,实现污染物

总量控制的环境保护目标,应有一定的环保投资用于污染源的治理,并在项目的初步设计阶段得到落实,以保证环保设施和主体工程做到"三同时"。

本项目总投资总计为 2000 万元, 其中环保设施投入约为 166 万元, 占工程建设投资 8.3%。

8.3.1.2 项目环保设施运行费用和环保成本费用估算

污染防治环境保护投资成本,即直接用于污染防治的工程环保投资,包括环保设施投入、环保设施维护、环保设施运行费用及"三废"处理成本、环保人员工资等。

(1) 年环保设施投入(施工期环保投入不计)

本项目直接用于"三废"环保设施投资 166 万元,项目环保设施使用年限按 20 年计,不计算残值,则每年计提折旧费用为 8.3 万元。

(2) 环保设施维护

环保设施维护费取环保设施总投资的8.0%,则需维护费用约13.28万元。

- (3) 环保投资运行费用及"三废"处理成本
- ①废气治理等设备的运行成本(主要为电费)预计 50 万元/a。
- ②固体废物处置费用: 年需要固体废物处置费用为 180 万元/a。
- ③废水处置费用:废水处理费用为60万元/a。

(4) 环保人员工资

该项目投产后,全厂环保运行维护管理人员为 2 人,拟定年人均工资为 5.0 万元/人/年,则人员工资为 10 万元/a。

综上所述,上述 4 项污染治理环保投资成本总计 320 万元/年。项目建成投产后生产期内年平均销售收入 10000 万元。生产期内平均利润总额 2000 万元,均大大高于本项目环保投资成本,在经济上环保投资费用有一定保证。

编号	项 目	金额(万元/年)	备 注
1	环保设施投入	8.3	
2	环保设施维护	13.28	
3	"三废"处理运行成本	290	主要为电费、运行费等
4	环保人员工资	10	

表 8.3-1 本项目环保成本费用估算

合 计	320.02	

8.3.2 环境负效益

本工程运行期尽管采取了一系列行之有效的防治措施,各项污染物做到了达标排放,但仍不可避免会造成一些环境负效益,主要为下列几方面:

废气排放对周边环境空气质量的不利影响。

厂址周围环境噪声有所增加。

8.3.3 环境保护措施的环境效益

(1) 废气处理系统

工艺废气不直接排放至环境,采取治理措施,使外排废气中污染物的浓度降低至最大限度,不但可大大减缓对周边环境空气的影响,同时也可保障工作人员的身心健康,取得显著的环境效益。

故项目环保设施及日常运行的投入可以有效的减轻环境污染。

(2) 废水处理环境效益

本项目污水依托华中表处园电镀废水深度处理车间处理达标后排入长江,将环境负效益尽可能降到最低。

(3) 固废处理系统

本项目产生的危废存储在危废暂存间,委托有资质单位处置,均会得到合理的处 置。

(4) 噪声防治措施

项目对于高噪声设施采取选型、隔声、减振、安装消声设备等措施,从而保障了公司生产和周围环境的安宁,有利于工作人员的身心健康,保证了企业生产的文明程度。

8.3.4 环境影响损益分析

减少环境污染增益: 若公司未对污染采取有效的控制措施,致使周围环境及居民受到影响,则由于停产整改、交纳排污费、罚款及赔偿居民损失等原因,形成一定的经济损失。采取环保治理措施可以避免这一经济损失,也等于获得了这部分经济收益。

生产增益: 若市场良好, 采取有效的污染治理措施使得污染物排放总量得到削减,

为今后的增产提供了可能,使经济收益随产量的增加而提高。

如果考虑由于减少污染物排放量而减少对自然生态环境造成的损失、厂区绿化带来的环境效益、多项资源和能源综合利用收入而减少潜在的环境污染和资源破坏效应等,以及本项目的社会环境效益方面,则本项目的环境收益更大。

8.4 小结

从以上分析来看,该项目环境经济损失主要为环保措施费用和环境质量损失,为一次性或短期经济损失,可以通过项目实施产生的经济效益来弥补损失,项目社会、经济正效益均较明显,符合环境效益、社会效益、经济效益同步增长原则。该项目的建设将有利于区域的发展,其负面效益是轻微的,是可以接受的。

9 环境管理与监测计划

9.1 环境管理要求

本次评价针对该项目特点初步拟定了以下营运期环境管理计划:

- (1) 制定各类环境保护规章制度、规定及技术规程;
- (2)建立完善的环保档案管理制度,包括各类环保文件、环保设施、环保设施检修、运行台账等档案管理;
 - (3) 监督、检查环保"三同时"的执行情况;
- (4)指定计划开停车、非正常工况和事故状态下的污染物处理、处置和排放管理措施,配置能够满足非正常工况和事故状态下的处理、处置污染物的环保设施;
- (5) 定期对各类污染源及环境质量进行监测,保证各类污染源达标排放,环境质量满足标准要求;
- (6)制定"突发性环境风险事件应急预案",最大限度地减少对环境造成的影响和破坏。

9.2 污染物排放管理要求

9.2.1 污染物排放清单

表 9.2-1 项目污染物排放清单

序号	项目	管理要求								
1	工程组成	目给水、	目租用华中表面处理循环经济产业园 301#厂房 4 楼,车间面积 1880m²,本项目新建 4 条电镀生产线,年产 900 万件汽车零部件及 300 万件电器配件,本项目给水、排水、供电等公用工程,废水处理、危废存储等环保工程,消防水、事故应急等环境风险防范工程均依托华中表处园基础配套,企业自建酸雾收集处是设施、铬雾收集处理设施、废气塔、电镀槽至车间废水收集口之间的废水管网、车间内危废暂存点、防渗等环保工程。							
2	原辅料及能源资 源		版、氯化锌、镍板、氯化镍、盐酸、硝酸等,使用水量为 XXXm³/a(新鲜自来水 15000m³/a、回用水 5150 m³/a、纯水 10000 m³/a),电 3 万 kW·h/a。							
3	污染物控制要求					污染[因子及污染防治措施			
	控制要求	控制要求 污染 污	元 染	运行参数	排放形式 及排放去 向	排污口信息	执行的环境标准) - M. W. H. M. E	
污染物	7种类		污染治理设施				污染物排放标准	环境质量标准	污染物排放量	
3.1										
3.1.1	酸洗、活化、出光 工序废气	氯化氢	1#酸雾净化塔 +35m 高烟道	净化效率 99%	有组织	DA001	《电镀污染物排放标准》(GB 21900-2008)	《环境影响评价技术导则-大气环境》(HJ2.2-2018)附录 D 表 D.1	氯化氢 0.164t/a	
3.1.2	镀槽废气	氯化氢	2#酸雾净化塔 +35m 高烟道	净化效率 99%						
3.1.3	301 车间 4 楼	氯化氢	加强管理	/	无组织	/	《大气污染物综合排放标准》 (GB16297-1996)表 2 中二级标准	-2018 / 削来 D 表 D.1		
3.2	废水									
3.2.1	生产、生活废水	COD、 Zn、Ni、 铬、石 油类等	分质分类收集, 进华中表处园电 镀废水深度处理 车间处理	华中表处园电镀 废水深度处理车 间一期一阶段工 程处理规模为 5000m³/d	排放至长江	/	本项目废水满足电镀废水深度处理车间进水水质要求。第一类重金属污染物经分质处理达到《电镀污染物排放标准》(GB 21900-2008)表2中车间或生产设施排口排放限值;总排口废水达到《电镀污染物排放标准》(GB 21900-2008)表2标准以及《城市污水再生利用工业用水水质》(GB/T 9923-2005)中相应排放标准限值	/	COD 0.336t/a 氨氮 0.0285t/a 总锌 0.00254t/a 总镍 0.00056t/a 总铬 0.00121t/a	
3.3	噪声	噪声	/			《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准	《声环境质量标准》 (GB3096-2008)3 类标准	/		

3.4	固废	一般固废统一储存于产业园内的一般固废中心,产业园统一清运处理; 危险废物用专用容器盛装置于车间危废临时暂存点,再送至产业园内危 险固废暂存间,委托有资质单位处置;生活垃圾交由环卫部门统一清运	《危险废物贮存污染控制标准》(GB 18597-2001)及其 2013 年修改清单	/
4	风险防范措施	建立定期巡视制度、强化管理	等,制定风险应急预案、定期风险应急演练	

9.2.2 主要污染物总量指标

根据《建设项目主要污染物排放总量指标审核及管理暂行办法》(环发[2014]197号)中规定:严格落实污染物排放总量控制制度,把主要污染物排放总量指标作为建设项目环境影响评价审批的前置条件,排放主要污染物的建设项目,在环境影响评价文件审批前,须取得主要污染物排放总量指标。

9.2.2.1 总量控制因子

根据《"十二五"主要污染问题控制规划编制指南》中有关"在"十一五"化学需氧量和二氧化硫两项主要污染物的基础上,"十二五"期间国家将氨氮和氮氧化物纳入问题控制指标体系,对上述四项主要污染物实施国家问题控制,统一要求、统一考核。"根据《关于印发<建设项目主要污染物排放总量指标审核及管理暂行办法>的通知》(环发[2014]197号)的要求,挥发性有机物、重点重金属污染物纳入总量控制指标体系。依据《重金属污染防治"十二五"规划》,国家重点管控的5类重金属为铅、汞、镉、铬、砷,同时兼顾镍、铜、锌、银、钒、锰、钴、铊、锑等重金属污染物。因此,本工程总量控制因子为:

废水: COD、NH3-N、铬、镍、锌、铜。

9.2.2.2 总量控制分析

本项目废水主要污染物总量考核按照末端向外环境排放量计算,即按电镀废水深度处理车间尾水排放标准浓度核算最终排放量,华中表处园生产区废水中第一类重金属污染物经分质处理达到《电镀污染物排放标准》(GB 21900-2008)表 2 中车间或生产设施排口排放限值要求后,与其他工业废水一起经园区专业污水处理设施进行处理,总排口废水达到《电镀污染物排放标准》(GB 21900-2008)表 2 标准以及《城市污水再生利用 工业用水水质》(GB/T 9923-2005)中相应排放标准限值:COD ≪60mg/L、NH₃-N≪5mg/L。本项目外排废水排放量约为 20007m³/a,计算出本项目水污染物总量控制指标分别为 COD 0.336t/a、氨氮 0.0285t/a。总铬排放浓度限值为 1.0mg/L,总铬排放量为 0.00121t/a;总镍排放浓度限值为 0.5mg/L,总镍排放量为 0.00056t/a;总锌排放浓度限值为 1.5mg/L,总锌排放量为 0.00254t/a。

本项目主要污染物控制指标分别为 COD 0.336t/a、氨氮 0.0285t/a、总锌 0.00254t/a、

总镍 0.00056t/a、总铬 0.00121t/a。

9.2.2.3 主要污染物排放总量控制指标来源分析

华中表处园总量为: COD 350t/a、NH₃-N 29.75t/a、铬 0.945t/a、镉 0.011t/a、铜 2.8t/a、镍 2.8t/a、锌 7.28t/a、银 0.246t/a。华中表处园已进行了总量排污权交易,湖 北金茂环保科技有限公司已于 2018 年 6 月 4 日与荆州市生态环境局签订了排污权交易 鉴证书(鄂环交鉴字[2018]0272 号),共取得总量 COD 350t、氨氮 29.75t。根据华中表处园环评报告分析,荆州市重金属(废水)剩余总量可满足华中表处园要求。

本项目主要污染物控制指标分别为 COD 0.336t/a、氨氮 0.0285t/a、总锌 0.00254t/a、总镍 0.00056t/a、总铬 0.00121t/a,本项目总量来源于湖北金茂环保科技有限公司所获得总量,能够满足本项目要求。

9.3 环境管理制度

9.3.1 环境管理体系

本项目实行企业负责制,由荆州恒镁表面处理科技有限公司委托设计及组织施工及建成后的运营管理。环境管理工作具体包括:编制本项目环境保护规划和计划,建立环境保护管理制度,归口管理和监管污染治理设施的运行;同时负责向环保部门编报污染监测及环境指标考核报表,及时将环保部门和上级部门的要求下达至生产管理部门并监督执行。

9.3.2 环境管理机构职责

工业企业的环境管理同计划管理、生产管理、技术管理、质量管理等各专项管理 一样,是工业企业管理的一个重要组成部分。荆州恒镁表面处理科技有限公司应按这种管理机构模式建立适合本企业特点的环境管理机构。

荆州恒镁表面处理科技有限公司应设置环保部门,全面负责公司环境保护治理设施的检查维护以及对环保污染事故的处理。环保机构建设、人员配置、分析仪器以及日常管理都应按照环境保护要求落实和执行。在加强企业生产管理的同时,同时加强对环境保护的管理,把环境保护指标纳入全厂考核指标之中。由于环境管理是一项综合性管理,它与清洁生产、生产工艺路线等方面都有密切关系,因此,还要在公司分

管环保的负责人领导下,建立各部门之间相互协调,分工负责,互相配合的综合环境管理体系。该机构主要职责有:

- ①建立和建全环境保护规章制度,明确环保责任制及奖惩办法。
- ②确立本公司的环境管理目标,对各车间各部门及操作岗位进行监督考核。
- ③建立环保档案,其中包括内容:环评报告、工程验收报告、污染源监测报告、 环保设施运行记录和其它环境统计资料。
- ④定期检查公司内各环保设施运行状况,负责维护、维修及管理工作,保证各装置的正常运行,尽量避免事故的发生。
- ⑤对固体废物的综合利用,清洁生产审核、污染物排放总量控制和环境监测工作实施管理和监督。
 - ⑥在项目实施建设期搞好环保设施"三同时"及施工现场的环境保护工作。
 - ⑦宣传环境法律法规,协调与各级环境管理部门之间的关系,处理环境问题纠纷。
 - ⑧组织职工的环境教育、搞好环境保护宣传工作。
- ⑨制定环境风险预防措施和环境突发事件应急预案,在公司有关领导的指导下, 进行环境突发事件紧急处置演练,负责污染事故的处理。
 - ⑩在条件成熟时,建立和实施 ISO14000 系列环境管理体系。

9.3.3 环保设施管理

公司专职环保设施管理操作人员负责本项目环境保护设施的运行、维护、保养、 检修等,其主要工作任务与职责:

- (1) 环保设备的运行、维护、保养、检修与生产设施同样对待;
- (2)加强环保设施管理,确保污染防治设备完好率达 100%,处理效果达到设计和排放标准要求;
 - (3) 编制设备维护保养检修项目及备品备件计划:
 - (4)负责环保设施的更新、改造和引进应用最佳实用技术或装备等。

9.3.4 排污口规范化管理

根据国家环保总局环发〔1999〕24号文件及湖北省环保局鄂环监〔1999〕17号文件要求,为进一步强化对污染源的现场监督管理及更好地落实国务院提出的实施污染

物排放总量控制和"一控双达标"的要求,规定一切新建、扩建、改建和限期治理的排污单位必须在建设污染治理设施的同时建设规范化排污口,并作为落实环境保护"三同时"制度的必要组成部分和项目验收内容之一。

本项目建设时,必须落实以下工作内容:

设立废水、废渣、噪声的排污位置设立标志牌,标志牌符合《环境保护图形标志》 (GB15562.1-1995) 规定监制的规格和样式。各排污必须具备采样和测流条件。

排放口	废气排放口	废水排放口	噪声源	固体废物贮存场	危险废物
图形标志			D(((危险废物
背景颜 色					
图形颜色					

表 9.3-1 环境保护图形标志

废水排放口:为满足以后的污染源监督管理工作需求,公司还应建立排放口相应 的及监督管理档案,登记各类废水所排放的主要污染物种类、数量、浓度和排放去向, 设施运行及日常监督检查记录等有关资料和记录。

固定噪声源:设置一个噪声标志牌,固定噪声污染源对边界影响最大处,须按《工业企业厂界环境噪声排放标准》(GB12348-2008)的规定,设置环境噪声监测点,并在该处附近醒目处设置环境保护图形标志牌。

固体废物储存场:工业固体废物和生活垃圾应设置专用堆放场地。危险固废暂存场严格按照《危险废物贮存污染控制标准》中的防雨淋、防渗漏、防泄漏等有关规定进行设计操作。

设置标志牌:环境保护图形标志牌由国家环保部门统一定点制作,并有当地环保部门根据企业排污情况统一向国家环保部订购。企业排污口分布图由荆州市环境监察部门统一绘制。排放一般污染物排放口(源),设置提示式标志牌,排放有毒有害等污染物的排污口设置警告式标志牌。

标志牌设置位置在排污口(采样点)附近且醒目处,高度为标志牌上边缘离地面2

- 米,排污口附近1米范围内有建筑物的,设平面式标志牌,无建筑物的设立式标志牌。
- 规范化排污口的有关设置(如图形标志牌、监控装置等)属环保设施,排污单位 必须负责日常的维护保养,任何单位和个人不得擅自拆除,如需变更的须报环保部门 同意并办理变更手续。
- (3)建立排污口档案。内容包括排污单位名称、排污口编号、适用的计量方式、排污口位置、所排污物来源、种类、浓度及计量纪录、排放去向、维护和更新记录。

9.3.5 环境监测管理

工程环境监测主要工作拟定期委托有检测资质单位完成,环境监测部门的主要任务与职责:

- (1) 负责全厂的环境监测工作,修改全厂环境监测的年度计划和发展规划;
- (2)建立严格可行的环境监测计划及质量保证制度,对工程的污染源进行调查分析,掌握主要污染物的排放规律和治理措施工艺,建立污染源管理档案;
- (3)对全厂的废气、废水及噪声污染源进行定期监测,参加"三废"的管理工作,为"三废"治理服务;
 - (4) 负责工艺污染事故的调查和监测,及时将监测结果上报有关主管部门;
- (5) 定期(季、年) 进行监测数据的综合分析,掌握污染源控制情况及环境质量 状况,为决策部门提供污染防治的依据。

9.3.6 健全各项环保制度

结合国家有关环保法律、法规,以及各级环保主管部门的规章制度、管理条例,企业应建立相应的环保管理制度,主要内容包括:

- (1)严格执行"三同时"的管理条例。在项目筹备、实施、施工期,严格执行建设项目环境影响评价的制度,并将继续按照国家法律法规要求,严格执行"三同时",确保污染处理设施能够和生产工艺"同时设计",和项目主体工程"同时施工",做到与项目生产"同时验收运行"。
- (2)建立报告制度。对项目排放的废气、废水等污染物实行排污许可证登记,按照地方环保主管部门的要求执行排污申报登记制度。
 - (3)严格实行在线监测和坚决做到达标排放。对污染防治措施安装在线监测系统,

及时向当地环境保护管理部门报送数据;企业也定期进行监测,确保污染物的稳定达标排放。

(4)健全污染处理设施管理制度。保证处理设施能够长期、稳定、有效地进行处理运行。净化设施的操作管理与生产经营活动一起纳入日常管理工作的范畴,落实责任人、操作人员、维修人员、运行经费、设备的备品备件和其他原辅材料。制定各级岗位责任制,编制操作规程,建立管理台帐。

9.3.7 加强职工教育、培训

加强职工的环境保护知识教育,提高职工环保意识,增加对生产污染危害的认识,明白自身在生产劳动过程中的位置和责任。

加强新招人员的上岗培训工作,严格执行培训考核制度,不合格人员决不允许上岗操作。

9.4 环境监测计划

9.4.1 污染源监测计划

本项目废水依托电镀废水深度处理车间进行处理,本项目生产运行期废水污染源监测依托华中表处园监测,华中表处园将按照指南要求在排污口设置自动监测。参考《排污单位自行监测技术指南 电镀工业》(HJ 985-2018),本项目环境监测计划详见下表:

类别			监测因子	监测频次	备注	
	电镀废水深度处理车间总排口		废水流量	自动监测		
			pH、COD、NH ₃ -N	自动监测	依托华中 表处园	
			石油类、悬浮物等	1 次/月		
废水			总铜、总锌、总氮、总磷、 总氰化物	1 日/日		
	预处理设施排放口		废水流量	自动监测		
			总铬、六价铬、总镉	自动监测		
			总银、总镍	1 次/日		
废气	有组织 废气	301#厂房烟道	氯化氢	半年监测1次	企业自行	

表 9.4-1 项目营运期环境监测计划

	无组织 废气	厂界外四周	氯化氢	每年监测1次	监测
	噪声源车间内			每季度 1 次,每次 监测 2 天	
噪声	噪声源车间外		设备噪声、降噪效果、厂 界噪声		
	厂界) i Ak)		
固废		废槽液、废滤芯、废 等危废、职工的生活 垃圾		每月统计1次	

9.4.2 环境质量监测计划

本项目环境质量监测主要依托华中表处园整体监测。

地表水环境: 依托华中表处园监测,监测指标包括 pH、总铬、六价铬、总镍、总镉、总银、总铜、总锌等,每年丰、平、枯水期至少各监测一次。

地下水环境:依托华中表处园监测,点位按照导则要求设定,监测指标包括:水位、pH、高锰酸盐指数、氰化物、总铬、六价铬、总铜、总锌、总镍等,每年监测 1次。

土壤:依托华中表处园监测,点位同土壤环境质量现状监测点位,监测指标包括: pH 值、总铬、总镍、总锌、总镉、总银、总铅、总汞等,每年监测 1 次。

同时建议华中表处园按照上述污染源监测及环境质量监测若企业不具备监测条件,可委托有资质的监测单位进行监测,监测结果以报表形式上报当地环境保护主管部门。

9.4.3 监测报告制度

环境管理和监测结果可采用年度报表和文字报告相结合的方式。通常情况下,每次监测完毕,应及时整理数据编写报告,作为企业环境监测档案,并需按上级主管部门的要求,按季、年将分析报告及时上报环保部门。

在发生突发事件情况下,要将事故发生的时间、地点、原因、后果和处理结果迅速以文字报告形式呈送上级主管部门以及荆州市生态环境局。

9.4.4 监测资料的保存与建档

- (1) 应有监测分析原始记录,记录应符合环境监测记录规范要求。
- (2) 及时做好监测资料的分析、反馈、通报与归档。

(3) 接受环保主管部门的监督和指导。

10 环境影响评价结论

10.1 建设项目建设概况

华中表面处理循环经济产业园为湖北金茂环保科技有限公司投资建设,《湖北金茂环保科技有限公司华中表面处理循环经济产业园项目环境影响报告书》于 2018 年 6 月 8 日取得环保部门审查意见(荆环保审文[2018]47 号),该项目总投资约 220000 万元,占地面积 978 亩,分四期进行建设,规划年电镀总面积 1453 万平方米,镀种涉及镀锌、镀镍、镀铬、镀银、镀铜、镀镉等,不涉及镀铅、镀汞、镀砷等。目前项目一期工程(一阶段)正在建设中,一期在建工程包括 101~102#厂房、201#~202#厂房、301#~302#厂房(共 6 栋),规模 5000m³/d 电镀废水深度处理车间,污泥处置中心、危险化学品仓库、危废暂存间、生产水池、消防水池、风险应急池、综合服务中心等主体、环保及公辅工程。华中表面处理循环经济产业园集中荆州市及周边地区电镀工业企业,实行电镀产业统一规划,资源有效利用,壮大电镀行业产业链,统一环境治污。

荆州恒镁表面处理科技有限公司成立于 2019 年,拟租用华中表面处理循环经济产业园 301#厂房 4 楼建设 900 万件/年汽车零部件及 300 万件/年电器配件表面处理生产线项目,项目总投资 2000 万元,租用车间面积 2564m²,新建 4 电镀生产线,分别为全自动环形式(72 臂)挂镀(锌)生产线、全自动环形式(60 臂)挂镀(镍/铬)生产线、全自动环形式(80 臂)挂镀(铜镍铬)生产线和全自动环形式(72 臂)挂镀(镍铬)生产线。本项目给水、排水、供电等公用工程、废水处理、危废存储等环保工程、消防水、事故应急等环境风险防范工程依托华中表处园的基础配套,企业自建酸雾收集处理设施、铬雾收集处理设施、废气塔、电镀槽至车间废水收集口之间的废水管网、车间内危废暂存点、防渗等环保工程。

10.2 环境质量现状

环境空气质量现状:根据荆州市环境质量公报,荆州城区 6 项评价指标中可吸入颗粒物(PM₁₀)和细颗粒物(PM_{2.5}) 2 项不达标。根据评价范围内监测数据,各监测

点位各监测因子均满足《环境空气质量标准》(GB3095-2012)以及《环境影响评价技术导则——大气环境》(HJ2.2-2018)表 D.1 的要求。

地表水环境现状:长江水质能稳定达到《地表水环境质量标准》(GB3838-2002)中的III类水域标准的要求。

声环境质量现状:本项目四向厂界声环境质量现状均符合《声环境质量标准》 (GB3096-2008)的3类区限值。

地下水环境质量现状: 地下水采样点各监测指标均能达到《地下水质量标准》 (GB14848-2017) III 类标准要求。

土壤环境质量现状:项目调查范围内土壤质量能够满足《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)表 1 第二类用地标准限值。

10.3 主要环境影响

(1) 大气环境影响预测分析结论

根据导则要求及预测分析,本次大气环境影响评价工作等级为一级。本次评价采用 AERMOD 模型进行大气环境影响预测。评价范围为以项目本项目生产车间为中心,边长 5km 的矩形范围。根据预测,项目 HCl 浓度贡献值的最大占标率为 22.23%<100%,叠加背景值后保证率小时浓度占标为 72.23%<100%,小时值能够达标,日平均浓度贡献值占标率为 13.14%<100%,对区域贡献值较小,叠加背景值后能够达标。

本项目从厂界起没有超过环境质量短期浓度标准值的网格区域,因此不需要设立 大气环境防护距离。出于对项目环保从严要求的考虑,本评价参照华中表处园环评中 卫生防护距离要求设置环境防护距离,以电镀生产车间为边界外的 200m 范围。

(2) 地表水环境影响预测分析结论

本项目各类废水可经分质、分类完善的管网排入电镀废水深度处理车间处理达标排放,生产废水共分为10类,包括高浓有机废水、高浓酸性废水、前处理废水、高浓锌络废水、络合废水、综合废水、高浓重金属废水、高浓地面清洗水,通过废水收集管网进入车间外的废水收集罐,废水中各污染物浓度应满足华中表处园电镀废水深度处理车间进水水质要求,进电镀废水深度处理车间进行处理,部分废水回用,尾水经专用管网接入排江泵站,废水经泵站提升排入长江。华中表处园生产区废水中第一类重金属污染物经分质处理达到《电镀污染物排放标准》(GB 21900-2008)表 2 中车间

或生产设施排口排放限值要求后,与其他工业废水一起经园区专业污水处理设施进行处理,总排口废水达到《电镀污染物排放标准》(GB 21900-2008)表 2 标准以及《城市污水再生利用 工业用水水质》(GB/T 9923-2005)中相应排放标准限值。本项目排放的废水依托华中表处园电镀废水深度处理车间处理后达标排放,对长江水质影响较小,环境能够接受。

(3) 固体废物环境影响预测分析结论

本项目产生的各种固体废物全部得到合理有效的处理与处置,处理率 100%,本项目所产生的各类固体废物对环境的污染影响较小。

(4) 噪声环境影响预测分析结论

通过预测结果统计可以得出,主要噪声设备声源经隔声、减震、消声等措施治理后,污染源强将有不同程度的降低,声源再经过建筑物屏蔽和空气吸收衰减后,声级值有不同程度的减少。预测结果表明:厂界四周各计算点昼、夜噪声预测值均能满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类标准限值,项目营运期对外界环境噪声的影响较小。

(5) 地下水环境影响预测分析结论

在采取相应的防渗措施后,不会对地下水环境造成影响。事故工况下,车间内生产电镀废水深度处理车间的水池防渗膜破损面积为1%状态下,废水下渗,地下水中锌、铬、镍的最大浓度均出现在排放泄漏点附近,影响范围内锌、铬、镍浓度随时间增长而升高。根据模型预测,下渗废水中锌、铬、镍影响范围均为100 天扩散到下游50m,1000 天将扩散到下游270m,对下游地下水产生污染。事故工况下,废水下渗对地下水环境造成污染,建设单位应确保各防渗措施得以落实,定期检查维护,加强管理,杜绝事故发生。

(6) 土壤环境影响预测分析结论

建设项目运营期,盐酸雾沉降不会造成评价区域范围内土壤酸化,在按要求采取防渗措施后,正常工况下,废水、危废等污染物不会发生泄露,对土壤环境无影响。在非正常工况下,含铬污染物发生泄露后,垂向污染深度为约60cm,应尽量杜绝含重金属污染物泄露事故,以免发生土壤污染。

10.4 公众意见采纳情况

荆州恒镁表面处理科技有限公司于 XXX 年 XX 月 XX 日在荆州市生态环境局网站上进行了环境影响评价的信息公示,在环评报告书编制工作基本完成时,于 XXX 年 XX 月 XX 日在荆州市生态环境局网站上进行了环境影响评价征求意见稿公示,于 XXX 年 XX 月 XX 日、XX 月 XX 日在江汉商报上进行了环境影响评价征求意见稿公示。截止报告书提交给建设单位送审为止,尚未接到与本项目相关的意见和建议。

10.5 环境保护措施及污染物排放情况

10.5.1 废水

本项目生产、生活废水总产生量为 42.05m³/d(12616m³/a),各类废水按照华中表 处园要求分质、分类处理。根据工程分析,本项目生产废水分为10类,各类废水产生 量分别为: 高浓有机废水 1.98 m³/d、高浓酸性废水 1.98 m³/d、前处理废水 11.33 m³/d、 高浓锌络废水 1.39 m³/d、络合废水 0.99 m³/d、高浓含铬废水 2.08 m³/d、含铬废水 3.96 m³/d、综合废水 1.98 m³/d、高浓重金属废水 2.48 m³/d、高浓地面清洗水 1.88 m³/d, 生 活污水 12m³/d(3600m³/a),废水中各污染物浓度应满足华中表处园电镀废水深度处 理车间进水水质要求,经电镀废水深度处理车间处理后,回用水量 5150 m³/a,排放水 量 7466 m³/a, 华中表处园生产区废水中第一类重金属污染物经分质处理达到《电镀污 染物排放标准》(GB 21900-2008)表 2 中车间或生产设施排口排放限值要求后,与其 他工业废水一起经园区专业污水处理设施进行处理,总排口废水达到《电镀污染物排 放标准》(GB 21900-2008)表 2标准以及《城市污水再生利用 工业用水水质》(GB/T 9923-2005)中相应排放标准限值,最终尾水外排长江。华中表处园生产区设置电镀废 水深度处理车间1座,设计处理能力27000 m^3/d ,排水量16000 m^3/d ,回用水量11000 m^3/d , 最终废水外排长江。目前华中表处园电镀废水深度处理车间一期工程正在建设中,预 计 2020 年 7 月建成运行, 电镀废水深度处理车间未运行前, 本项目不得进行生产, 本 项目废水依托华中表处园电镀废水深度处理车间处理,从处理能力、接管水质、管网 连通、工艺合理性、时间衔接等方面均具有可行性。

10.5.2 废气

电镀生产线酸雾废气经收集后分别由 2 套酸雾净化塔装置处理,尾气由 301#厂房烟道排放,风量为 24000m³/h, 折算成基准排放量下的排放浓度分别为氯化氢 20.56mg/m³,能够满足《电镀污染物排放标准》(GB 21900-2008)表 5 中排放限值要求(氯化氢 30 mg/m³)。

项目无组织排放主要为生产过程无组织排放氯化氢,氯化氢排放量为 0.150t/a。通过加强车间管理,加强废气收集,尽量减少废气无组织排放,同时车间设置 200m 卫生防护距离,降低废气可能对敏感点造成的影响。

10.5.3 固体废物

本项目固体废物主要为废槽渣、废槽液、废包装材料等,均为危险废物,项目危险废物产生量约为23.59t/a。危废暂存间进行防腐防渗处理,建设单位在生产车间设置防渗漏桶收集,定期收集的危险废物及时送至华中表处园统一设置规范的危险废物暂存间,按危险废物的管理条款进行分类储存,并进行防漏或防渗处置,定期送往有资质的危废处置单位进行处置。

此外,还有少量的生活垃圾,产生量约为 15t/a,由环卫部门统一收集处理。固体废物采取以上处理措施以后,不会产生二次污染。

10.5.4 噪声

拟建项目对噪声通过采取减振、隔声、消声等措施后,强噪声源可降噪 15~20dB(A),再经距离衰减后四向厂界噪声贡献值均满足《工业企业厂界环境噪声排放标准》(GB 12348-2008)表 1 工业企业厂界环境噪声排放限值中的 3 类声环境功能区标准限值。

10.6 环境影响经济损益分析

本项目总投资总计为 2000 万元,其中环保设施投入约为 166 万元,占工程建设投资 8.3%。该项目环境经济损失主要为环保措施费用和环境质量损失,为一次性或短期环境经济损失,可以通过项目实施产生的经济效益来弥补损失,项目社会、经济正效益均较明显,符合环境效益、社会效益、经济效益同步增长原则。该项目的建设将有

利于区域的发展, 其负面效益是轻微的, 是可以接受的。

10.7 环境管理与监测计划

为有效保护环境和防止污染事故的发生,公司设有专职环境保护的管理机构和专职环境管理人员。主要负责项目施工期和运行期环境保护方面的检测、日常监督、突发性环境污染事故的处理,以及协调和解决与环保部门和周围公众关系的环境管理工作。

为切实搞好项目营运期污染物达标排放及总量控制达标,建设方应根据《排污单位自行监测技术指南 电镀工业》(HJ 985-2018)制定科学、合理的环境监测计划以监视环保设施的运行。

10.8 环境风险

建设单位应严格落实本评价提出的各项环境风险防范措施,完善环境风险监控预警系统,配备必须的环境风险物资、装备,制定环境风险应急预案,加强与华中表处园联动,加强事故应急演练,不断完善环境风险防范措施,提升环境风险事故处置能力。一旦发生事故迅速反应,采取合理的应对方式,并立即向华中表处园、政府有关部门汇报,寻求社会支援,可将环境风险危害控制在可接受的范围内。

10.9 清洁生产

通过对该项目生产工艺先进性、技术装备水平先进性、资源能源利用及污染物产生情况、废物回收和环境管理要求等各方面的分析,对照《电镀行业清洁生产评价指标体系》, Y_{Π} =100 \geq 85,且限定性指标全部满足II级基准值要求及以上,本项目电镀生产线的清洁生产水平等级为II级(国内清洁生产先进水平)。

10.10 主要污染物总量控制

本项目总量控制指标为 COD 0.336t/a、氨氮 0.0285t/a、总锌 0.00254t/a、总镍 0.00056t/a、总铬 0.00121t/a,来源于湖北金茂环保科技有限公司所获得总量,本项目总量纳入华中表处园管理。

10.11 项目环境可行性

本项目不属于《产业结构调整指导目录(2019年本)》中鼓励类、限制类及淘汰

类,因此属于允许类。本项目已取得湖北省固定资产投资项目备案证,等级备案项目编码 2019-421004-33-03-062263。本项目建设内容不在《限制用地项目目录(2012 年本)》及《禁止用地项目目录(2012 年本)》之列。

本项目符合军民融合暨光通讯电子信息产业园 A 区规划,满足华中表面处理循环经济产业园对入驻企业环保要求,符合长江大保护相关要求,符合《荆州市重金属污染综合防治规划》和《荆州市土壤污染防治工作方案》,满足"三线一单"要求,本项目选址具有环境可行性。

10.12 环境影响结论

综上所述,荆州恒镁表面处理科技有限公司 900 万件/年汽车零部件及 300 万件/年电器配件表面处理生产线项目的建设将促进地区经济的发展。项目建设符合国家现行产业政策,厂址选择合理,符合军民融合暨光通讯电子信息产业园 A 区规划和华中表面处理循环经济产业园入驻企业环保要求,满足资源综合利用和清洁生产的要求,项目环保措施合理,项目投产后正常运行时各种污染物均能满足排放浓度达标和主要污染物总量控制指标达标的要求,对周围环境和主要环境保护目标影响较小。项目选址符合当地土地利用规划、地表水环境功能区划、空气环境功能区划、声环境功能区划以及建设项目环境管理的要求,环境风险在可承受范围内。从环保角度而言,该项目在拟建地建设具有环境可行性。